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PREFACE TO VOLUME TWO

*

The general introduction in the first volume of this book need

not be repeated here. However, a few points may be briefly

recalled, as they are relevant for both volumes. We shall also

take a quick glance ahead beyondthe last ofthe men mentioned.

Mathematics as understood by mathematicians is based on

deductive reasoning applied to sets of outright assumptions

called axioms or postulates. It is sufficient here to describe

deductive reasoning as the rules of common logic, although

mathematical logic goes far beyond that. The postulates under-

lying a particular division of mathematics, such as elementary

algebra or school geometry, may have been suggested by every-

day observation of the world as it presents itself to our senses.

Many ofthe propositions of geometry, for instance, such as that

gem attributed to Thales in the sixth century b.c., ‘The angle

inscribed in a semicircle is a right angle’, axe evident to the eye.

But however obvious and sensible they may seem, they are not

a part of mathematics until they have been deduced from a set

of postulates accepted without argument as self-consistent. The

great hut (to us) nameless mathematicians of Babylonia dis-

covered, or invented, many beautiful things in both algebra and

geometry, but, so far as is known, they proved none of them.

It remained for the Greeks of about 600 b.c. to invent proof -

deductive reasoning. With that epochal invention mathematics

was bom. But logic and proof are by no means the whole story.

Intuition and insight axe as freely used to-day in mathematics

as they must have been by the Babylonians.

It was many centuries before the full significance of what

those old Greeks had done was understood and applied to all

mathematics, and thence to all reasoning. A notable instance is

school algebra, first thoroughly understood and rigorouriy

developed only in the 1830’s by the British School, of whom -

George Peacock (1791-1858) is especially memorable. Unfortu-

nately there is not space here to tell the lives of these little-

xxiii



PEEFACE

knoTm men -who helped to prepare the way for the vast develop-

ment ofmathematics in the nineteenth and twentieth centuries.

As we pass from the eighteenth to the nineteenth century

we are overwhelmed by a tidal wave of free inventiveness.

Xew departments of mathematics were created and developed

in bewildering profusion. The great mathematicians of the nine-

teenth century, some of whom are presented iiere, seem

to be almost of a different species from their predecessors. The
new men were not content with special problems, but attacked

and solved general problems whose solutions yielded those of a
multitude of problems which, in the eighteenth century, would
have been considered one by one. A striking example has often

been noted in the contrast between Gauss (1777-1855) and Abel
(1802-29) in the theory of algebraic equations. There is a
similar distinction in the matter of geometry between Gauss
and his pupil Riemann (1825-66). It is no disparagement of

Gauss, but merely a statement of historical fact, to say that he
was content with the problem of finding the algebraic solution

of binomial equations, and did not even mention the general
problem, solved by Abel and Galois (1811—32), of determining
necessary and sufficient conditions that any given algebraic
equation be solvable by radicals. The nature of the general
problem is explained in the accoimts given here of Abel and
Galois. Of course there is a certain loose continuity in all

mathematics, clear back to Babylon and Egypt, but the
interesting and fruitful points on the curve of progress are the
discontinuities that appear when the curve is closely analysed
as in that just noted of Gauss, Abel, and Gabis. One such from
the 1930 s must suffice here as a current example.
The paradoxes ofZeno and the repeated attempts to establish

the differential and integral calculus on a firm logical foundation
exercised mathematicians as early as the seventeenth century,

continued to worry them aU through the second half of the
nineteenth. Among those who struggled at the task were three
whom we shall meet later. Cantor, Dedekind, and Weieistrass.
Dedckind admitted failure. But failure or not to achieve the
desired end, the work of all three gave a tremendous impulse
to the study of all mathematical reasoning. How was it to he
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decided that a certain theorem had really been proved? Might
not there be concealed inconsistencies in the very foundations

and postulate systems on which the whole elaborate structure

had been reared? It began to appear that an exhaustive re-

examination of everything from the ground up was demanded.
The capital problem was to prove the self-consistency of

mathematical analysis - the calculus and its numerous modern
offshoots. Presently this programme turned out to be far more
difficult than had been anticipated, and David Hilbert (1862—

1943), the last of the giants from the nineteenth century, in

1898 proposed the more modest problem of proving the consis-

tency of arithmetic. This led to the like for mathematical logic.

All was going well till 1931, when Kurt Gddel (1906- )

showed that in any well-defined system of mathematical axioms
there exist mathematical questions which cannot be settled on
the basis ofthese axioms. But suppose we go to a more inclusive

system in which, perhaps, the questions can be settled. The
same difficulty appears in the new system, and so on indefi-

nitely. There are thus specific purely mathematical ‘yes-no'

questions which will be forever undecidable by human beings.

This whoUy unexpected conclusion has been called the most
significant advance in logic since Aristotle. It does not mean
that mathematics has gone to smash, but it does suggest that

some of the claims made for mathematics in the past will have
to he moderated. One philosophical die-hard who thoroughly

misunderstood what Gddel had done, proudly proclaimed, ‘I

am an Aristotelian. The old logic is good enough for me’, which
sounded like an echo of the revivalist hymn ‘The old-time

religion, the old-time religion is good enough for me.’ Aristo-

telian logic may be good enough for the old-timers, hut it is

not good enough for mathematics, nor has it been for at least

three centuries. As one detail, Aristotle’s logic makes no pro-

vision for variables and functions as they occur in mathematics.

There is not space here to elaborate any of this, but those

interested will find an elementary and lucid account by Alfred

Tarski in his Introduction to Logic and the Methodology of Deduc^
five Sciences (Oxford University Press, 2nd Edition, 1941).

1953 E . T. B E n n
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VOLUME TWO

CHAPTER SIXTEEN

THE COPERNICUS OF GEOMETRY
Lobatchewsky

*

Granting that the commonly accepted estimate of the im-

portance of what Copernicus did is correct, we shall have to

admit that it is either the highest praise or the severest con-

demnation humanly possible to call another man the ‘Coper-

nicus’ of anything. When we understand what Lobatchewsky

did in the creation of non-Euclidean geometry, and consider

its significance for all human thought, of which mathematics is

only a small if important part, we shall probably agree that

Clifford (1845-79), himself a great geometer and far more than

a ‘mere mathematician’, was not overpraising his hero when he

called Lobatchewsky ‘The Copernicus of Geometry’.

Nikolas Ivanovitch Lobatchewsky, the second son of a minor

government official, was bom on 2 November 1793 in the

district of Makarief, government of Nijni Novgorod, Russia.

The father died when Nikolas was seven, leaving his widow,

Praskovia Ivanovna, the care of three young sons. As the

father’s salary had barely sufficed to keep his family going

while he was alive the widow found herself in extreme poverty.

She moved to Kazan, where she prepared her boys for school as

best she could, and had the satisfaction of seeing them accepted,

one after the other, as free scholars at the Gymnasium. Nikolas

was admitted in 1802 at the age of eight. His progress was

phenomenally rapid in both mathematics and the classics. At

the age of fourteen he was ready for the university. In 1807 he

entered the University of Kazan (founded in 1805), where he
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was to Spend the next forty years of his life as student, assistant

professor, professor, and finally rector,

Hoping to make Kazan ultimately the equal of any university

in Exxrope, the authorities had imported several distinguished

professors from Germany. Among these was the astronomer

Littrow, who later became director of the Observatory at

Vienna, whom Abel mentioned as one of his excuses for seeing

something of ‘the south’. The German professors quickly recog-

nized Lobatchewsky’s genius and gave him every encourage-

ment.

In 1811, at the age of eighteen, Lobatehewsky obtained his

master’s degree after a short tussle with the authorities, whose

ire he had incurred through his youthful exuberance. His

German friends on the faculty took his part and he got his

degree with distinction. At this time his elder brother Alexis

was in charge of the elementary mathematical courses for the

training of minor government officials, and when Alexis

presently took a sick-leave, Nikolas stepped into his place as

substitute. Two years later, at the age of twenty-one, Lobat-
chewsky received a probationary appointment as ‘Extra-

ordinary Professor’ or, as would be said in America, Assistant

Professor.

Lobatehewsky*s promotion to an ordinary professorship came
in 1816 at the unusually early age of twenty-three. His duties

were heavy. In addition to his mathematical work he was
charged with courses in astronomy and physics, the former to
substitute for a colleague on leave. The fine balance with which
he carried his heavy load made him a conspicuous candidate for
yet more work, on the theory that a man who can do much is

capahfe of doing more, and presently Lobatehewsky found
himself University Librarian and curator of the chaotically
disordered University Museum.

Students are often an unruly lot before life teaches them that
generosity of spirit does not pay in the cut-throat business of
earning a living. Among Lobatchewsky’s innumerable duties
from 1819 tiH the death of the Tsar Alexander in 1825 was that
of supervisor of all the students in Kazan, from the elementary
schools to the men taking post-graduate courses in the Univer-
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sity. The supervision was primarily over the political opinions

of his charges. The difficulties of such a thankless job can easily

be imagined. That Lobatchewsky contrived to send in his

reports day after day and year after year to his suspicious

superiors without once being called on the carpet for laxity in

espionage, and without losing the sincere respect and affection

of all the students, says more for his administrative ability than

do all the gaudy orders and medals which a grateful GJovern-

ment showered on him and with which he delighted to adorn

himself on state occasions.

The collections in the University Museum to all appearance

had been tossed in with a pitchfork. A similar disorder made the

extensive library practically unusable. Lobatchewsky was

commanded to clean up these messes. In recognition of his

signal services the authorities promoted him to the deanship of

the Faculty of Mathematics and Physics, but omitted to appro-

priate any funds for hiring assistance m straightening out the

library and the museum. Lobatchewsky did the work with his

own hands, cataloguing, dusting, and casing, or wielding a mop
as the occasion demanded.

With the death of Alexander in 1825 things took a turn for

the better. The particular official responsible for the malicious

persecution of the University of Kazan was kicked out as being

too corrupt for even a government post, and his successor

appointed a professional curator to relieve Lobatchewsky of his

endless task of cataloguing books, dusting mineral specimens,

and deverminizing stuffed birds. Needing political and moral

support for his work in the University, the new curator did

some high politics on his own account and secured the appoint-

ment in 1827 of Lobatchewsky as Rector. The mathematician

was now head of the University, but the new position was no

sinecure. Under his able direction the entire staff was reorga-

nized, better men were brought in, instruction was liberalized

in spite of official obstruction, the library was built up to a

higher standard of scientific sufficiency, a mechanical workshop

was organized for making the scientific instnnnents required in

research and instruction, an observatory was founded and

equipped - a pet project of the energetic Rector’s - and the vast

325



yLBS OF MATHEMATICS

mineralogical collection, representative of the whole of Russia,

was put in order and constantly enriched.

Even the new dignity of his rectorship did not deter Lobat-

chewsky from manual labour in the library and museum when

he felt that Ms help was necessary. The University was his life

and he loved it. On the slightest provocation he would take oft

his collar and coat and go to work. Once a distinguished

foreigner, taking the coatless Rector for a janitor or workman,

asked to be shown through the libraries and museum collec-

tions. Liobatchewsky showed him the choicest treasures,

explaining as he eshibited. The visitor was charmed and greatly

impressed by the superior intelligence and courtesy of this

obliging Russian worker. On partiDg from his guide he tendered

a hand^me tip. Lobatchewsky, to the foreigner’s bewilder-

ment, froze up in a cold rage and indignantly spurned the

proffered coin. Thinking it but just one more eccentricity of the

bi^-minded Russian Janitor, the visitor bowed and pocketed

his money. That evening he and Lobatchewsky met at the

Gkjvemor’s dinner table, where apologies were offered and

accepted on both sides.

Lobatchewsky was a strong believer in the philosophy titiat

in order to get a thing done to your own liking you must either

do it yourself or understand enough about its execution to be

able to criticize the work of another intelligently and construe-

tiveiy. As has been said, the University was his life. When the

Government decided to modernize the buildings and add new
ones, Lobatchewsky made it his business to see that the work
was done properly and the appropriation not squandered. To
fit himself for this task he learned arcMtecture. So practical was
his mastery of the subject that the buildings were not only

handsome and suited for their purposes but, what must be
almost unique in the history of governmental building, were
constructed for less money than had been appropriated. Some
years latex (in 1842) a disastrous fire destroyed half and
took with it Lobatchewsky’s finest buildings, the
barelycompleted observatory—the pride of his heart. But owing
to his energetic cool-headedness the instruments and the
hbrary were saved. After the fire he set to work immediately to
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rebuild. Two years later not a trace of the disaster remained.

We recall that 1842, the year of the fibre, was also the year in

which, thanks to the good offices of Gauss, Lobatehewsky was

elected a foreign correspondent of the Royal Society of Gottin-

gen for his creation of non-Euclidean geometry. Although it

seems incredible that any man so excessively burdened with

teaching and administration as Lobatehewsky was, could fiind

the time to do even one piece ofmediocre scientific work, he had
actually, somehow or another, made the opportunity to create

one of the great masterpieces of all mathematics and a land-

mark in human thought. He had worked at it off and on for

twenty years or more. EQs first public communication on the

subject, to the Physical-Mathematical Society of Kazan, was
made in 1826. He might have been speaking in the middle of the

Sahara Desert for all the echo he got. Gauss did not hear of the

work till about 1840.

Another episode in Lobatehewsky’s busy life shows that it

was not only in mathematics that he was far ahead of his time.

The Russia of 1830 was probably no more sanitary than that of

a century later, and it may be assumed that the same disregard

of personal hygiene which filled the German soldiers in

World War I with an amazed disgust for their unfortunate

Russian prisoners, and which to-day causes the industrious

proletariat to use the public parks and playgrounds of Moscow
as vast and convenient latrines, distinguished the luckless inha-

bitants of Kazan in Lobatchewsky’s day when the cholera

epidemic foimd them richly prepared for a prolonged visitation*

The germ theory of disease was still in the future in 1830^

although progressive minds had long suspected that filthy

habits had more to do with the scourge of the pestilence than

the anger of the Lord.

On the arrival of the cholera in Kazan the priests did what
they could for their smitten people, herding them into the

churches for united supplication, absolving the dying and
burying the dead, but never once suggesting that a shovel

might be useful for any purpose other than digging graves.

Realizing that the situation in the town was hopeless, Lobat-

chewsky induced his faculty to bring their families to the
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UniTersity and prevailed upon - practically ordered - some of

the students to join him in a rational, human fight against the

cholera. The mndoTVS were kept closed, strict sanitary regula-

tions were enforced, and only the most necessary forays for

replenishing the food supply were permitted. Of the 660 men,

women and children thus sanely protected, only sixteen died, a

mortality of less than 2.6 per cent. Compared to the losses under

the traditionalremedies practised in the town thiswas negligible.

It might be imagined that after all his distinguished services

to the State and his European recognition as a mathematician,

Lobatchewsky would be in line for substantial honours from

his Government, To imagine anjrthing of the kind would not

only be extremely naive hut would also traverse the scriptural

injunction ‘Put not your trust in princes’. As a reward for all

his sacrifices and his unswerving loyalty to the be^ in Russia,

Lobatchewsky was brusquely relieved in 1846 of his Professor-

ship and his Rectorship of the university. No explanation of

this singular and unmerited double insult was made public.

Lobatchewsky was in his fifty-fourth year, vigorous of body
and mind as ever, and more eager than he had ever been to

continue with his mathematical researches. His colleagues to a

man protested against the outrage, jeopardizing their own
security, but were curtly informed that they as mere professors

were constitutionally incapable of comprehending the higher

mysteries of the science of government.

The ill-disguised disgrace broke Lobatchewsky. He was still

peiinitt€td to retain his study at the University. Hut when his

successor, hand-picked by the Government to discipline the
disaffected faculty, arrived in 1847 to take up his ungracious
task, Lobatchewsi^ abandoned all hope of ever being anybody
again in the University which owed its intellectual eminence
almost entirely to his efforts, and he appeared thereafter only
occasionally to assist at examinations. Although his eyesight
was failing rapidly he was still capable of intense mathematical
thinking.

He still loved the University. His health broke when his son
died, but he lingered on, hoping that he might still be of some
use. In 1855 the University celebrated its semi-centennial anni-
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versary. To do honour to the occasion, Lobatchewsky attended

the exercises in person to present a copy of his Pangeometry
^ the

completed work of his scientific life. This work (in French and
Russian) was not written by his own hand, but was dictated, as

Lobatchewsky was now blind. A few months later he died, on
24 February 1856, at the age of sixty-two.

To see what Lobatchewsky did we must first glance at

Euclid’s outstanding achievement. The name Euclid until quite

recently was practically synonymous with elementary school

geometry. Of the man himself very little is known beyond his

doubtful dates, 330-275 b.c. In addition to a systematic

account of elementary geometry his Elements contain all that

was known in his time of the theory of numbers. Geometrical

teaching was dominated by Euclid for over 2,200 years. TTis

part in the Elements appears to have been principally that of a
co-ordinator and logical arranger of the scattered results of his

predecessors and contemporaries, and his aim was to give a
connected, reasoned account of elementary geometry such that

every statement in the whole long book could be referred back
to the postulates. Euclid did not attain this ideal or anything

even distantly approaching it, although it was assumed for

centuries that he had.

Euclid’s title to immortality is based on something quite

other than the supposed logical perfection which is still some-

times erroneously ascribed to liim. This is his recognition that

the fifth of his postulates (his Axiom XI) is a pure assumption.

I

The fifth postulate can be stated in many equivalent fomas,

each of which is deducible from any one of the others by means
of the remaining postulates of Euclid’s geometry. Possibly the

simplest of these equivalent statements is the following: Given
any straight line I and a point P not on Z, then in the plane

determinedby Iand P it is possible to drsLWprecisely one straight
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line I through P such that V never meets Z no matter how far V

and I are extended (in either direction). Merely as a nominal

definition we say that two straight lines lying in one plane

which never meet aveparalleL Thus the fifth postulate of Euclid

asserts that through P there is precisely one straight line

parallel to L Euclid's penetrating insight into the nature of

geometry convinced him that this postulate had not, in his

time, been deduced from the others, although there had been

many attempts to prove the postulate. Being unable to deduce

the postulate himself from his other assumptions, and wishing

to use it in the proofs of many of his theorems, Euclid honestly

set it out with his other postulates.

There are one or two simple matters to be disposed of before

we come to Lobatchewsky’s Copemican part in the extension

of geometry. We have alluded to ‘equivalents’ of the parallel

postulate. One of these, ‘the hypothesis of the right angle’, as it

is called, will suggest two possibilities, neither equivalent to

Euclid's assumption, one of which introduces Lohatchewsky’s

geometiv', the other, Riemann’s,

Consider a figure which ‘looks like’ a rectangle, con-
sisting of four straight lines AX, XY, YB, BA, in which BA
(or AB) is the base, AX and YB (or BY) are drawn equal and
perpendicular to AB, and on the same side ofAB. The essential
things to be remembered about this figure are that each of the
angles XAB^ YBA (at the base) is a right angle, and that the
sides AX, BY are equal in length. Without using the parcdlel
postulate, it can be proved that the angles AXY, BYX^ are
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equal, but, without using this postulate, it is impossible to prove

that AXY, BYX are right angles, although they look it. If we
assume the parallel postulate we can prove that AXY, BYX are

right angles and, conversely, ifwe assume that AXY, BYX are

right angles, we can prove the parallel postulate. Thus the

assumption that AXY, BYX are right angles is equivalent to the

parallel postulate. This assumption is to-day called the hypothesis

of the right angle (since both angles are right angles the singular

instead of the plural ‘angles’ is used).

It is known that the hypothesis of the right angle leads to a

consistent, practically usefiil geometry, in fact to Euclid’s

geometry refurbished to meet modem standards of logical

rigour. But the figure suggests two other possibilities: each of

the equal angles AXY, BYX is less than a right angle - the

hypothesis of the acute angle*, each of the equal angles AXY,
BYX is greater than a right angle - the hypothesis of the obtuse

angle. Since any angle can satisfy one, and only one, of the

requirements that it be equal to, less than, or greater than a right

angle, the three hypotheses - of the right angle, acute angle,

and obtuse angle respectively - exhaust the possibilities.

Common experience predisposes us in favour of the first

hypothesis. To see that each ofthe others is not as unreasonable

as might at first appear we shall consider something closer to

actual human experience than the highly idealized ‘plane’ in

which Euclid imagined his figtires drawn. But first we observe

that neither the hypothesis of the acute angle nor that of the

obtuse angle will enable us to prove Euclid’s parallel postulate,

because, as has been stated above, Euclid’s postulate is equi-

valent to the hypothesis of the right angle (in the sense of inter-

deducibility; the hypothesis of the right angle is both necessary

and sufficient for the deduction of the parallel postulate)*

Hence if we succeed in constructing geometries on either of the

two new hypotheses, we shall not find in them parallels in

Euclid’s sense.

To make the other hypotheses less unreasonable than they

may seem at first sight, suppose the Earth were a perfect sphere

(without irr^ularities due to mountains, etc.). A plane drawn
through the centre of this ideal Earth cuts the surface in a great
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circle. Suppose we wisli to go from one point A to another B on

the surface of the Earth, keeping always on the surface in

passing from A to B, and suppose further that we wish to make

the journey by the shortest way possible. This is the problem of

\great circle sailing’. Imagine a plane passed through A, B, and

the centre ofthe Earth (there is one, and only one, such plane).

This plane cuts the surface in a great circle. To make our

shortest journey we go from Ato B along the shorter of the two

arcs of this great circle joining them. If .4, B happen to lie at

the extremities of a diameter, we may go by either arc.

The preceding example introduces, an important dejSnition,

that of a geodesic on a surface^ which will now be explained. It

has just been seen that the shortest distance joining two points

on a sphere, the distance itself being measured on the surface,

is an arc ofthe great circle joining them. \Ye have also seen that

the longest distance joining the two points is the other arc of the

same great circle, except in the case when the points are ends of

a diameter, when shortest and longest are equal. In the chapter

on Fermat ‘greatest’ and ‘least’ were subsumed under the

common name "extreme’, or ‘ extremum’. We recall now one

usual definition of a straight-line segment joining two points in

a plane - 'the shortest distance between two points’. Trans-

ferring this to the sphere, we say that to straight line in the

plane corresponds great circle on the sphere. Since the Greek

word for the Earth is the first syllable ge (y^) of geodesic we
call all extrema joining any two points on any surface the

geodesics of that surface. Thus in a plane the geodesics are

Euclid’s straight lines; on a sphere they are great circles. A
geodesic can be visualized as the position taken by a string

stretched as tight as possible between two points on a surface.

Now, in navigation at least, an ocean is not thought of as a
flat surface (Euclidean plane) if even moderate distances are

concerned ; it istaken forwhat itveryapproximately is, namely,
a part of the surface of a sphere, and the geometry of great

circle sailing is not Euclid’s. Thus Euclid’s is not the only
geometry of human utility. On the plane two geodesics inter-

sect in exactly one point unless they are parallel, when they do
not intersect (in Euclidean geometry); but on the sphere any
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two geodesics always intersect in precisely two points. Again,

on a plane, no two geodesics can enclose a space - as Euclid

assumed in one of the postulates for his geometry; on a sphere,

any two geodesics always enclose a space.

N

S

Imagine now the equator on the sphere and two geodesics

drawn through the north pole perpendicular to the equator. In

the northern hemisphere this gives a triangle with curved sides,

two of which are equal. Each side of this triangle is an arc of a

geodesic. Draw any other geodesic cutting the two equal sides

so that the intercepted parts between the equator and the cut-

ting line are equal. We now have, on the sphere^ the four-sided

figure corresponding to the AXYB we had a few moments ago

in the plane. The two angles at the base of this figure are right

angles and the corresponding sides are equal, as before, bid each

of the equal angles at X^Y is now greater than a right angle. So,

in the highly practical geometry of great circle sailing, which is

closer to real human experience than the idealized diagrams of

elementary geometry ever get, it is not Euclid’s postulate

which is true - or its equivalent in the hypothesis of the right

angle - but the geometry which follows from the hypothesis of

the obtuse angle.

In a similar manner, inspecting a less familiar surface, we can
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make reasonable the hypothecs of the acute angle. The surface

looks like two infinitely long trumpets soldered together at their

largest ends. To describe it more accurately we must introduce

the plane curve called the tractrixt which is generated as follows.

Let two lines XOX\ YOY' be drawn in a horizontal plane

intersecting at right angles in 0, as in Cartesian geometry.

Imagine an inextensible fibre lying along YOF', to one end of

which is attached a small heavy pellet; the other end of the

fibre is at O. Pull this end out along the line 0X» As the pellet

Y

y'

follows, it traces out one half of the tractrix; the other half is

traced out by drawing the end of the fibre along OX', and of
course is merely the reflection or image in OY of the first half.
The drawing out is supposed to continue indefinitely - Ho
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infinity’ - in each instance. Now imagine the tractrix to be

revolved about the line XOX\ The double-trumpet surface is

generated; for reasons we need not go into (it has constant

negative curvature) it is called a pseudo-sphere. If on this

surface we draw the four-sided figure with two equal sides and

two right angles as before, using geodesics, we find that the

hypothesis of the acute angle is realized.

Thus the hypotheses ofthe right angle, the obtuse angle, and

the acute angle respectively are true on a Euclidean plane, a

sphere, and a pseudosphere respectively, and in all cases

‘straight lines’ are geodesics or extrema. Euclidean geometry is a

limiting, or degenerate, case of geometry on a sphere, being

attained when the radius of the sphere becomes infinite.

Instead of constructing a geometry to fit the Earth as human
beings now know it, Euclid apparently proceeded on the as-

sumption that the Earth is flat. If Euclid did not, his prede-

cessors did, and by the time the theory of ‘space’, or geometry,

reached him the bald assumptions which he embodied in his

postulates had already tal^en on the aspect of hoary and im-

mutable necessary truths, revealed to mankind by a higher

intelligence as the veritable essence of all material things. It

took over 2,000 years to knock the eternal truth out of geome-

try, and Lobatchewsky did it.

To use Einstein’s phrase, Lobatchewsky challenged an axiom.

Anyone who challenges an ‘accepted truth’ that has seemed

necessary or reasonable to the great majority of sane men for

2,000 years or more takes his scientific reputation, if not his

life, in his hands. Einstein himself challenged the axiom that

two events can happen in different places at the same time, and

by analysing this hoary assumption was led to the invention of

the special theory of relativity. Lobatchewsky challenged the

assumption that Euclid’s parallel postulate or, what is eqid-

valent, the hypothesis of the right angle, is necessary to a con-

sistent geometry, and he backed his challenge by producing a

system ofgeometry based on the hypothesis of the acute angle

in which there is not one parallel through a fixed point to a

given straight line but two. Neither of Lobatchewsky’s parallels

meets the line to which both are parallel, nor does any straight
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line drawn through the feed point and lying within the angle

formed by the two parallels. This apparently bizarre situation

is ‘realized’ by the geodesies on a pseudosphere.

For any everyday purpose (measurements of distances, etc.),

the differences between the geometries of Euclid and Lobat-
chewsky are too small to count, but this is not the point of
importance; each is self-consistent and each is adequate for

human experience. Lobatchewsky abolished the necessary
*truth’ of Euclidean geometry. His geometry was but the first

of several constructed by his successors. Some of these substi-
tutes for Euclid’s geometry - for instance the Riemannian
geometry’ of general relativity - are to-day at least as important
in the still living and growing parts of physical science as
Euclid's was, and is, in the comparatively static and classical

parts. For some purposes Euclid's geometry is best or at least
sufficient, for others it is inadequate and a non-Euclidean
geometry is demanded,

Euclid in some sense was believed for 2,200 years to have
discovered an absolute truth or a necessary mode of human
perception in his system of geometry. Lobatchewsky’s creation
was a pragmatic demonstration of the error of this belief. The
boldness of his challenge and its successful outcome have
inspired mathematicians and scientists in general to challenge
other ‘axioms’ or accepted ‘truths’, for example the ‘law’ of
cau^ty, which, for centuries, have seemed as necessary to
straight thinking as Euclid’s postulate appeared till Lobat-
chewsky discarded it.

pie full impact ofthe Lobatchewskian method of
axioms has probably yet to be felt- It is no exaggeration to call
Lobatchewsky the Copernicus of Geometry, for geometry is
only a part of the vaster domain which he renovated; it might
even be just to designate him as a Copernicus of all thought.



CHAPTER SEVENTEEN

GENIUS AND POVERTY

Abel

*

An astrologer in the year 1801 might have read in the stars that

a new galaxy of mathematical genius was about to blaze forth

inaugurating the greatest century of mathematical hjLstory. In

all that galaxy of talent there was no brighter star than Niels

Henrik Abel, the man of whom Hermite said, Tie has left

mathematicians something to keep them busy for five hundred

years’.

Abel’s father was the pastor of the little village of Findo, in

the diocese of Kristiansand, Norway, where his second son,

Niels Henrik, was bom on 5 August 1802. On the father’s side

several ancestors had been prominent in the work of the church

and all, including Abel’s father, were men of culture. Anne

Marie Simonsen, Abel’s mother, was chiefly remarkable for her

great beauty, love of pleasure, and general flightiness - quite an

exciting combination fox a pastor’s helpmeet. From hex Abel

inherited his striking good looks and a very human desire to get

something more than everlasting hard work out of life, a desire

he was seldom able to gratify.

The pastor was blessed with seven children in all at a time

when Norway was desperately poor as the result of wars with

England and Sweden, to say nothing of a famine thrown in for

good measure between wars. Nevertheless the family was a

happy one. In spite of pinching poverty and occasional empty

stomachs they kept their chins up. There is a charming picture

of Abel after his mathematical genius had seized him sitting by

the fireside with the others chattering and laughing in the room

while he researched with one eye on his mathematics and the

other on his brothers and sisters. The noise never distracted him

and he joined in the badinage as he wrote.
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Like several of the first-rank mathematieians Abel discovered

his talent early. A brutal schoolmaster unwittingly threw

opportunity Abel’s way. Education in the first decades of the

nineteenth century was virile, at least in Norway. Corporal

punishment, as the simplest method of toughening the pupils’

characters and gratifying the sadistic inclinations of the

masterful pedagogues, was generously administered for every

trivial offence. Abel was not awakened through his own skin,

as Newton is said to have been by that thundering kick donated

by a playmate, but by the sacrifice of a fellow student who had
been flogged so unmercifully that he died. This was a bit too

thick even for the rugged school board and they deprived the

teacher of his job. A competent but by no means brilliant

mathematician filled the vacancy, Bemt Mchael Holmboe
(1795-1850), who was later to edit the first edition of Abel’s

collected works in 1839.

Abel at the time was about fifteen. Up till now he had shown
no marked talent for anything except taking his troubles with

a sense of humour. Under the Mndly, enlightened Holmboe’s
teaching Abel suddenly discovered what he was. At sixteen he

began reading privately and thoroughly digesting the great

works of his predecessors, including some of those of Newton,
Euler, and Lagrange. Thereafter real mathematics was not only

his serious occupation but his fascinating delight. Asked some
years later how he had managed to forge ahead so rapidly to

the front rank he replied, ‘By studying the masters, not their

pupils’ — a prescription some popular writers oftextbooks might
do well to mention in their prefaces as an antidote to the
poisonous mediocrity of their uninspired pedagogics.

Holmboe and Abel soon became close ffiends. Although the
teacher was himself no creative mathematician he knew and
appreciated the masterpieces of mathematics, and his

eager suggestions Abel was soon mastering the toughest of the
classics, including the Disquisitmm Arithmeticae of Gauss.
To-day it is a commonplace that many fine things the old

masters thought they had proved were not really proved at all.

Paiticulariy is this true of some of Euler’s work on infinite

scries and some of Lagrange’s on analysis. Abel’s keen mind
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was one of the first to detect the gaps in his predecessors’

reasoning, and he resolved to devote a fair share of his lifework

to caulking the cracks and making the reasoning watertight.

One ofhis classics in this direction is the proofof the general

binomial theorem, special cases of which had been stated by-

Newton and Euler. It is not easy to give a sound proof in the

general case, so perhaps it is not astonishing to find alleged

proofs still displayed in -the schoolbooks as if Abel had never

lived. This proof, however, was only a detail in Abel’s vaster

programme of cleaning up the theory and application of infinite

series.

Abel’s father died in 1820 at the age of forty-eight. At the

time Abel was eighteen. The care of his mother and six children

fell on his shoulders. Confident of himself Abel assumed his

sudden responsibilities cheerfully. Abel was a genial and opti-

mistic soul. With no more than strict justice he foresaw himself

as an honoured and moderately prosperous mathematician in a

university chair. Then he could provide for the lot of them in

reasonable security. In the meantime he took private pupils

and did what he could. In passing it may be noted that Abel

was a very successful teacher. Had he been footloose poverty

would never have bothered him. He could have earned enough

for his own modest needs, somehow or other, at any time. But
with seven on his back he had no chance. He never complained,

but took it an in his stride as part of the day’s work and kept at

his mathematical researches in every spare moment.
Convinced that he had one of the greatest mathematicians of

all time on his hands, Holmboe did what he could by getting

subsidies for the young man and digging down generously into

his own none too deep pocket. But the country was poor to the

point of starvation and not nearly enough could be done. In

those days of privation and incessant work Abel immortalized

himself and sowed the seeds of the disease which was to kill

him before he had half done his work,

Abel’s first ambitious venture was an attack on the general

equation of the fifth degree (the ‘quintic’). All his great pre-

decessors in algebra had exhausted their efforts to produce a

solution, without success. We can easily imagine Abel’s exulta-
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tion when he mistakenly imagined he had succeeded. Through

Holmboe the supposed solution was sent to the most learned

mathematical scholar of the time in Denmark who, fortunately

for Abel, asked for further particulars without committing him-

self to an opinion on the correctness of the solution. Abel in the

meantime had found the flaw in his reasoning. The supposed

solution was of course no solution at alL This failure gave him

a most salutary jolt; it jarred him on to the right track and

caused him to doubt whether an algebraic solution was possible.

He proved the impossibility. At the time he was about nineteen.

But he had been anticipated, at least in part, in the whole

project.

As this question of the general quintic played a role in

algebra similar to that of a crucial experiment to decide the fate

of an entire scientific theory, it is worth a moment’s attention.

We shall quote presently a few things Abel himself says.

The nature of the problem is easily described. In early school

algebra we learn to solve the general equations of the first and
second degrees in the unknown r, say

ax -T =0, ax- -f 4- c = 0,

and a little later those of the third sud fourth degrees, say

aa!® + 6aj*4-aj4-d:s=o, a2!^ + 6a^-f-caj2-{-ifoj4-e = o.

That is, we produce finite (closed) formulae for each of these

general equations of the first four d^rees, expressing the

unknown x in terms ofthe given coefiELcients a,d,c,d,e. A solution

Euch as any one of these four which can be obtained by only a
fiinUe number of additions, multiplications, si4btractio7is, divisions,

and extractions of roots, all these operations being performed on
the given coefficients, is called algebraic. The important qualifi-

cation in this definition of an algebraic solution is ‘finite’

;

there
is no difficulty in describing solutions for any algebraic equation
which contain no extractions ofroots at all, but which do imply
an infinity of the other operations named.

After this success with algebraic equations of the first four
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degrees, algebraists struggled for nearly three centuries to pro-

duce a gimilar algebraic solution for the general quintic

ax^ + bx^ cos^ dx^ + ex + f 0,

They failed. It is here that Abel enters.

The following ejdxacts are given partly to show how a great

inventive mathematician thought and partly for their intrinsic

interest. They are from Abel’s memoir On ike algebraic resolution

of equations.

‘One of the most interesting problems of algebra is that of the

algebraic solution of equations. Thus we find that nearly all

mathematicians of distinguished rank have treated this subject.

We arrive without difficulty at the general expression of the

roots of equations of the first four degrees. A uniform method

for solving these equations was discovered and it was believed

to be applicable to an equation ofany degree; but in spite of all

the efforts of Lagrange and other distinguished mathematicians

the proposed end was not reached. That led to the presumption

that the solution of general equations was impossible algebrai-

cally; but this is what could not be decided, since the method

followed could lead to decisive conclusions only in the case

where the equations were solvable. In effect they proposed to

solve equations without knowing whether it was possible. In

this way one might.indeed arrive at a solution, although that

was by no means certain; but if by ill luck the solution was

impossible, one might seek it for an eternity, without finding it.

To arrive infallibly at something in this matter, we must there-

. fore follow another road. We can give the problem such a form

that it shall always be possible to solve it, as we can always do

with any problem.* Instead of asking for a relation of which it

is not known whether it exists or not, we must ask whether

such a relation is indeed possible. . , . When a problem is posed

in this way, the very statement contains the germ of the solu-

tion and indicates what road must be taken; and I believe there

* , cfi gii’on peut ioujoursfaire d^un probUme qaelconque^ is what

Abel says. This seems a trifle too optimistic; at least for ordinary

mortals. How would the method be applied to Fermat’s Last

Theorem?

341



MEN OF MATHEMATICS

mil be few instances where we shall fail to arrive at propositions

of more or less importance, even when the complication of the

calculations precludes a complete answer to the problem.

He goes on to say that this, the true scientific method to be

followed, has been but little used owing to the extreme complin

cation of the calculations (algebraic) which it entails; ‘but’, he

adds, in many instances this complication is only apparent and

vanishes after the first attack.’ He continues

:

‘I have treated several branches of analysis in this manner,

and although I have often set myself problems beyond my

powers, I have nevertheless arrived at a large number of general

results which throw a strong light on the nature of those quan-

tities whose elucidation is the ohject of mathematics. On

another occasion I shall ^ve the results at which I have

arrived in these researches and the procedure which has led me

to them. In the present memoir I shall treat the problem of the

algebraic solution of equations in all its generality.’

Presently he states two general inter-related problems which

he proposes to discuss:

‘1. To find all the equations of any given degree which are

solvable algebraically.

2. To determine whether a given equation is or is not solv-

able algebraically.’

At bottom, he says, these two problems are the same, and

although he does not claim a complete solution, he does indicate

an infallible method (des moyem siirs) for disposing of them

fully.

Abel’s irrepressible inventiveness hurried him on to vaster

problems before he had time to return to these; their complete

solution - the explicit statement of necessary and sufficient

conditions that an algebraic equation be solvable algebraically

was to be reserved for Galois. When this memoir of Abel’s was

publi^ed in 1828, Galois was a boy of sixteen, already well

started on his career of fundamental discovery. Galois later

came to know and admire the work of Abel; it is probable that

Abel never heard the name of Galois, although when Abel

visited Paris he and his brilliajit successor could have been only

a few miles apart. But for the stupidity of Galois’ teachers and
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the loftiness of some of Abel’s mathematical ‘superiors’,

it is quite possible that he and Abel might have met.

Epoch-making as Abel's work in algebra was, it is over-

shadowed by his creation of a new branch of analysis. This, as

Legendre said, is Abel’s ‘time-outlasting monument’. If the

stor}^ of his life adds nothing to the splendour of his accom-
plishment it at least suggests what the world lost when he died.

It is a somewhat discouraging tale. Only Abel’s unconquerable

cheerfulness and unyielding courage under the stress of poverty
and lack of encouragement from the mathematical princes of

his day lighten the story. He did, however, find one generous

friend in addition to Holmboe.

In June 1822 when Abel was nineteen, he completed his

required work at the University of Kristiania. Holmboe had
done everything possible to relieve the young man’s poverty,

convincing his colleagues that they too should subscribe to

make it possible for Abel to continue his mathematical re-

searches. They were immensely proud ofhim but they were also

poor themselves. Abel quickly outgrew Scandinavia, He longed

to visit France, then the mathematical queen of the world,

where he could meet his great peers (he was in a class far above
some of them, but he did not know it). He dreamed also of

touring Germany and meeting Gauss, the undisputed prince of

them all.

Abel’s mathematical and astronomical friends persuaded the

University to appeal to the Norwegian Government to subsidize

the young man for a grand mathematical tour of Europe. To
impress the authorities with his worthiness, Abel submitted an
extensi’re memoir which, from its title, was probably connected

with the fields of his greatest fame. He himseK thought highly

enough of it to believe its publication by the University would
bring Norway honour, and Abel’s opinion of his own work,

never more than just, was probably as good as anyone’s. Unfor-

tunately the University was having a severe financial struggle

of its own, and the memoir was finally lost. After undue deli-

beration the Government compromised ~ does any Government
ever do anything else? - and instead of doing the only sensible

thing, namely sending Abel at once to France and Germany,
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granted him a subsidy to continue his university studies at

Kristiania in order that he might brush up his French and

Crerman, That is exactly the sort of decision he might have

expected from any body of officials conspicuous for their good

hearts and common sense. Common sense, however, has no

business dictating to genius.

Abel dallied a year and a half at Ejistiania, not wasting his

time, but dutifully keeping his part of the contract by wrestling

(not too successfully) with German, getting a fair start on

French, and working incessantly at his mathematics. With his

incurable optimism he had also got himself engaged to a young
woman - Crelly Kemp. At last, on 27 August 1825, when Abel

was twenty-three, his friends overcame the last objection of the

Government, and a royal decree granted him si^cient funds

for a year’s travel and study in France and Germany. They did

not give him much, but the fact that they gave him anything

at all in the straitened financial condition of the country says

more for the state of civilization in Norway in 1825 than could

a whole encyclopaedia ofthe arts and trades. Abel was grateful.

It took him about a month to straighten out his dependents

before leaving. But thirteen months before this, innocently

believing that all mathematicians were as generous-minded as

himself, he had burned one of his ladders before ever setting

foot on it.

Out of his own pocket - God only knows how - Abel had paid
for the printiDg of his memoir in which the impossibility of
solving the general equation of the fifth degree algebraically

is proved. It was a pretty poor job of printing but the best back-
ward Norway could manage. This, Abel naively believed, was
to be bis scientific passport to the great mathematicians of the
Continent. Gauss in particular, he hoped, would recognize the
signal merits of the work and grant him more than a formal
interview. He could not know that Hhe prince of mathemati-
dans^ sometimes exhibited anything but a princely generosity
to young matliematiciaiis struggling for just recognition.

Gauss duly received the paper. Through unimpeachable
witnesses Abel heard how Gauss welcomed the offering. With-
out deigning to read it he tossed it aside with the disgusted
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exclamation ‘Here is another of those monstrosities!’ Abel
decided not to call on Gauss. Thereafter he disliked Gauss
intensely and nicked liim whenever he could. He said Gauss
wrote obscurely and hinted that the Germans thought a little

too much of him. It is an open question whether Gauss or Abel
lost more by this perfectly understandable dislike.

Gauss has often been censured for his ‘haughty contempt’ in

this matter, but those are hardly the right words to describe his

conduct. The problem ofthe general equation of the fifth degree
had become notorious. Cranks as well as reputable mathemati-
cians had been burrowing into it. Now, if a mathematician to-

day receives an alleged squaring of the circle, he may or may
not write a courteous note of acknowledgement to the author,

but he is almost certain to file the author’s manuscript in the

waste-basket. For he knows that lindemann in 1882 proved
that it is impossible to square the circle by straight-edge and
compass alone - the implements to which cranks limit them-
selves, just as Euclid did. He knows also that Lmdemann’s
proof is accessible to anyone. In 1824 the problem of the general

quintic was almost on a par with that of squaring the circle.

Hence Gauss’ impatience. But it was not quite as bad; the

impossibility had not yet been proved. Abel’s paper supplied

the proof; Gauss might have read something to interest him
intensely had he kept his temper. It is a tragedy that he did
not, A word from him and Abel would have been made. It is

even possible that his life would have been lengthened, as we
shall admit when we have his whole story before us.

After leaving home in September 1825, Abel first visited the
notable mathematicians and astronomers of Norway and Den-
mark and then, instead of hurrying to Gottingen to meet Gauss
as he had intended, proceeded to Berlin. There he had the great
good fortune to fall in with a man, August Leopold Crelle

(1780-1856) who was to be a scientific Holmboe to him and who
had far more weight in the mathematical world than the good
Holmboe ever had. If Crelle helped to make Abel’s reputation,

Abel more than paid for the help by making Crelle’s. Wherever
mathematics is cultivated to-day the name of Crelle is a house-
hold word, indeed more; for ‘Crelle’ has become a proper noun
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signifying the great journal he founded, the first three volumes

of which contained twenty-two of Abel’s memoirs. The journal

made Abel, or at least made him more widely known to Conti-

nental mathematicians than he could ever have been without

it; Abel's great work started the journal oft wdth a bang that

was heard round the mathematical world; and finally the

journal made Crelle. This self-effacing amateur of mathematics

deserves more than a passing mention. His business ability and
his sure instinct for picking collaborators who had real mathe-

matics in them did more for the progress of mathematics in the

nineteenth century than half a dozen learned academies.

Crelie himself was a self-taught lover of mathematics rather

than a creative mathematician. By profession he was a civil

engineer. He early rose to the top in his work, built the first

railroad in Germany, and made a comfortable stake. In Ms
leisure he pursued mathematics as something more than a
hobby. He himself contributed to mathematical research before

and after the great stimulus to German mathematics wMch Ms
Journal fur die reine und angemandte Mathematik (Journal for

pure and applied Mathematics) gave on its foundation in 1826.

This is CreHe’s greatest contribution to the advancement of

mathematics.

The Journal was the first periodical in the world devoted
exclusively to mathematical research. Expositions of old work
were not welcomed. Papers (except some of Crelle’s own) were
accepted from anyone, provided only the matter was new, true,

and of sufficient importance’ - an intangible requirement - to
merit publication. Regularly once every three months from
1826 to the present day ‘‘Creile’ has appeared with its sheaf of
new mathematics. In the chaos after the World War "Crelle’

tottered and almost went down, but was sustained by sub-
scribers from all over the world who were unwilling to see tMs
great monument to a more tranquil civilization our own
obliterated. To-day hundreds of periodicals are devoted either
wholly or in considerable part to the advancement of pure and
applied mathematics. How many ofthem will survive our next
outburst of epidemic insanity is anybody’s guess.
When Abel arrived in Berlin in 1825 CreUe had just about
646
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made up his mind to start his great venture with his own funds.

Abel played a part in clinching the decision. There are two

accounts of the first meeting of Abel and Crelle, both interest-

ing. Crelle at the time was holding down a government job for

which he had but little aptitude and less liking, that ofexaminer

at the Trade-School {Gewerbe-Institut) in Berlin. At third-hand

(Crelle to Weierstrass to Mttag-Leffler) Crelle’s account of that

historic meeting is as follows.

‘One fine day a fair young man, much embarrassed, with a

very youthful and very intelligent face, walked into my room.

Believing that I had to do with an examination-candidate for

admission to the Trade-School, I explained that several

separate examinations would be necessary. At last the young

man opened his mouth and explained [in poor German], ‘"Not

examination, only mathematics”.’

Crelle saw that Abel was a foreigner and tried him in French,

in which Abel could make himself understood with some diffi-

culty. Crelle then questioned him about what he had done in

mathematics. Diplomatically enough Abel replied that he had

read, among other things, Crelle’s own paper of 1823, then

recently published, on ‘analytical faculties’ (now called

‘factorials’ in English). He had found the work most interesting

he said, but Then, not so diplomatically, he proceeded to tell

Crelle that parts of the work were quite wrong. It was here that

Crelle showed his greatness. Instead of freezing or blowing up
in a rage at the daring presumption of the young man before

him, he pricked up his ears and asked for particulars, which he

followed with the closest attention. They had a long mathe-

matical talk, only parts of which were intelligible to Crelle.

But whether he understood all that Abel told him or not, Crelle

saw clearly what Abel was. Crelle never did understand a tenth

of what Abel was up to, but his sure instinct for mathematical

genius told him that Abel was a mathematician of the first

water and he did everything in his power to gain recognition

for his young prot^e. Before the interview was ended Crelle

had made up his mind that Abel must be one of the first

contributors to the projected Journal,

Abel’s account differs, but not essentially. Reading between
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the lines we may see that the differences are due to Abel’s

modesty. At first Abel feared bis project of interesting Crelle

was fated to go on the rocks. Crelle could not make out what the

young man wanted, who he was, or anything about him. But at

Crelle's question as to what Abel had read in mathematics

things brightened up considerably. When Abel mentioned the

works of the masters he had studied Crelle became instantly

alert. They had a long talk on several outstanding unsettled

problems, and Abel ventured to spring his proof of the impossi-

bility of sohdiig the general quintic algebraically on the unsus-

pecting Crelle. Crelle wouldn’t hear of it; there must he some-

thing wrong with any such proof. But he accepted a copy of the

paper, thumbed through it, admitted the reasoning was beyond

him - and finally published Abel’s amplified proof in his

Journal. Although he was a limited mathematician with no

pretensions to scientific greatness, CreUe was a broad-minded

man, in fact, a great man.

Crelle took Abel everywhere, showing him off as the finest

mathematical discovery yet made. The self-taught Swiss

Steiner - ihe greatest geometer since Apollonius’ - sometimes

accompanied Crelle and Abel on their rounds. When Crelle’s

Mends saw him coining with his two geniuses in tow they would

exclaim ‘Here comes Father Adam again with Cain and Abel.’

The generous sociability of Berlin began to distract Abel

firom his work and he fled to Freibuig where he could concen-

trate. It was at Freiburg that he hewed his greatest work into

shape, the creation of what is now called Abel’s Theorem. But
he had to be getting on to Paris to meet the foremost French
oaatheznatimns of the day — Legendre, Cauchy, and the rest.

It can be said at once that Abel’s reception at the hands of

the French mathematicians was as civil as one would expect
finom distinguished representatives of a very civil people in a
rery civil age. They were all very civil to Mm - damned civil,

in fact, and that was about all that Abel got out of the visit to
whk^ he had looked forward with such ardent hopes. Of course
they did not know who or what he was. They made only per-

functory efforts to find out. If Abel opened his mouth - when
he got within talking distance of them - about his own work,
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they immediately began lecturing about their own greatness.

But for his indifference the venerable Legendre might have

learned something about his own lifelong passion (for elliptic

integrals) which would have interested him beyond measure.

But he was just stepping into his carriage when Abel called and

had time for little more than a very civil good-day. Later he

made handsome amends.

Late in July 1826 Abel took up his lodgings in Paris with a

poor but grasping family who gave him two bad meals a day

and a vile room for a sufficiently outrageous rent. After four

months of Paris Abel writes his impressions to Holmboe:

PariSi 24 October 1862^

To tell you the truth this noisiest capital of the Continent

has for the moment the effect of a desert on me. I know
practically nobody; this is the lovely season when every-

body is in the country. . . . Up tiil now I have made the
'

acquaintance of Mr LegendrCi Mr Cauchy and Mr Hackette,

and some less celebrated but very able mathematicians:

Saigey^ editor of the Bulletin des Sciences, and Mr
Lejeune’Dirickletf a Prussian who came to see me the other

day believing me to be a compatriot of his. He is a mathe-

matician of great penetration. With Mr Legendre he has

proved the impossibility of solving = z® in whole

numbers, and other very fine things. Legendre is extremely

polite, but unfortunately very old. Cauchy is mad. , .

.

What he does is excellent, but very muddled. At first I

understood practically none of it; now I see spme of it more
clearly. , , . Cauchy is the only one occupied with pure

mathematics, Poisson, Fourier, Ampire, etc., busy them-
selves exclusively with magnetism and other physical sub-

jects. Mr Laplace writes nothing now, I believe. His last

work was a supplement to his Theory of Probabilities. I

have often seen him at the Institut. He is a very jolly little

chap, Poisson is a little fellow; he knows how to behave
with a great deal of dignity; Mr Fourier the same. Lacroix

is quite old. Mr Hachette is going to present me to several

of these men.
The French are much more reserved with strangers than

the Germans. It is extremely difficult to gain their inti-

macy, and I do not dare to urge my pretensions as far as
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that; finally every beginner has a great deal of difficulty in

getting noticed here. I have just finished an extensive

treatise on a certain class of transcendental functions [his

masterpiece] to present it to the Institut [Academy of

Sciences], which will be done next Monday. I showed it to

Mr Cauchy

y

but he scarcely deigned to glance at it. And 1

dare to say, without bragging, that it is a good piece of

work. I am curious to hear the opinion of the Institut on it.

I shall not fail to share it with you. . .

.

He then tells what he is doing and continues with a rather

disturbed forecast of his prospects. ‘I regret having set two
years for my travels, a year and a half would have sufficed.’ He
has got all there is to be got out of Continental Europe
und is anxious to be able to devote his time to working up
what he has invented.

So many things remain for me to do, but so long as I am
abroad, all that goes badly enough. K I had my professor-

ship as IVIr Kielhau has hisl My position is not assured, it

is true, hut I am not uneasy about it; if fortime deserts me
in one quarter perhaps she will smile on me in another.

From a letter of earlier date to the astronomer Hansteen we
take two extracts, the first relating to Abel’s great project of

re-establishing mathematical analysis as it existed in his day
on a firm foundation, the second showing something of his

human side. (Both are free translations.)

In the higher analysis too few propositions are proved
with conclusive rigour. Everywhere we find the unfortu-
nate procedure ofreasoning from the special to the general,
and the miracle is that after such a process it is only seldom
that we find what are called paradoxes. It is indeed exceed-
ingly interesting to seek the reason for this. This reason, in
my opinion, resides in the fact that the functions which
have hitherto occurred in analysis can be expressed for the
most part as powers. . . , When we proceed by a general
method, it is not too difficult [to avoid pitfalls]

; but I have
Imd to be very circfumspect, because propositions without
rigorous proof (i.e. without any proof) have taken root in
me to such an extent that I constantly run the risk of
using them without further examination. These trifles
will appear in the journal published by Mr Crelle,
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Immediately following tliis he expresses his gratitude for his

treatment in Berlin. ‘It is true that few persons are interested

in me, but these few are infinitely dear to me, because they have

shown me so much kindness. Perhaps I can respond in some

way to their hopes ofme, for it must be hard for a benefactor to

see his trouble lost.’

He tells then how CreUe has been begging him to take up his

residence permanently in Berlin. Crelle was already using all his

human engineering skiU to hoist the Norwegian Abel into a

professorship in the University of Berlin. Such was the Ger-

many of 1826. Abel of course was already great, and the sure

promise of what he had in him indicated him as the likeliest

mathematical successor to Gauss. That he was a foreigner made
no difference; Berlin in 1826 wanted the best in mathematics.

A century later the best in mathematical physics was not good

enough, and Berlin quite forcibly got rid of Einstein. Thus do

we progress. But to return to the sanguine Abel.

At first I counted on going directly from Berlin to Paris,

happy in the promise that Mr Crelle would accompany me.
But Mx Crelle was prevented, and I shall have to travel

alone. Now I am so constituted that I cannot endure soH-

tude. Alone, I am depressed, I get cantankerous, and I

have little inclination for work. So I said to myself it

would be much better to go with IVIr Boeck to Vieima, and
this trip seems to me to be justified by the fact that at

Vienna there are men like Littrow, Burg^ and still others,

all indeed excellent mathematicians; add to this that I

shall make but this one voyage in my life. Could one find

anythingbutreasonableness in thiswish ofmineto see some-
of the life of the South? I could work assiduously enough
while travelling. Once in Vienna and leaving there for

Paris, it is almost a bee-line via Switzerland. Why shouldn’t

I see a little of it too? My Godt I, even I, have some taste

for the beauties of nature, like everybody else. This whole
trip would bring me to Paris two months later, that’s aU.

I could quickly catch up the tune lost. Don’t you thirik

such a trip would do me good?

So Abel went South, leaving his masterpiece in Cauchy’s care

to be presented to the Institut. The prolific Cauchy was so busy
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l&yxng of own and cackling about them that he had no

time to examine the veritable roc’s egg which the modest Abel

had deposited in the nest. Hachette, a mere pot-washer of a

mathematician, presented Abel’s Memoir on a general property

of a very extensive doss of transcendental functions to the Paris

Academy of Sciences on 10 October 1826. This is the work

which Legendre later described in the words of Horace as

^tnonumentum acre perennius*, and the 500 years’ work which

Hennite said Abel had laid out for future generations of mathe-

maticians. It is one of the crowning achievements of modem
mathematics.

What happened to it? Legendre and Cauchy were appointed

as referees. Legendre was seventy-four, Cauchy thirty-nine.

The veteran was losing his edge, the captain was in bis self-

centred prime. Legendre complained (letter to Jacobi, 9 April

1829) that ‘we perceived that the memoir was barely legible; it

was written in ink almost white, the letters badly formed; it

was agreed between us that the author should be asked for a

neater copy to be read.’ What an alibi! Cauchy took the

memoir home, mislaid it, and foigot all about it.

To match this phenomenal feat of forgetfulness we have to

imagine an Egyptologist misla37ing the Rosetta Stone. Only by
a sort of miracle was the memoir unearthed after Abel’s death.

Jacobi heard of itfrom Legendre, withwhom Abel corresponded

after returning to Norway, and in a letter dated 14 March 1829

Jacobi exclaims, ‘What a discovery is this of Mr AbeTsl . .

.

Did anyone ever see the like? Buthow comes it that this discov-

ery, perhaps the most important mathematical discovery that

has been made in our Century, having been communicated to

your Academy two years ago, has escaped the attention of your
colleagues?’ The enquiry reached Norway. Tomake a long story

fihoxt, the Norwegian consul at Paris raised a diplomatic row
about the missing manuscript and Cauchy dug it up in 1830.

Finally it was printed, but not till 1841, in the Merrioires

pr^sente's par divers savants d ?Academic royaJLe des sciences de

rInstitut de Franc€f voL 7, pp. 176-264. To crown this epic in

pcwo of crass incompetence, the editor, or the printers, or both
between them, succeeded in losing the manuscript before the
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proof-sheets were read.*** The Academy (in 1830) made amends
to Abel by awarding him the Grand Prize in Mathematics

jointly with Jacobi. Abel, however, was dead.

The opening paragraphs of the memoir indicate its scope.

The transcendental functions hitherto considered by
mathematicians are very few in number. Practically the

entire theory of transcendental functions is reduced to

that of logarithmic functions, circular and exponential

functions, fimctions which, at bottom, form but a single

species. It is only recently that some other functions have
begun to be considered- Among the latter, the elliptic

transcendents, several of whose remarkable and elegant

properties have been developed by IVIr Legendre, hold the
first place. The author [Abel] has considered, in the memoir
which he has the honour to present to the Academy, a very
extended class of fxmctions, namely: all those whose deri-

vatives are expressible by means of algebraic equations

whose coefficients are rational functions of one variable,

and he has proved for these functions properties analogous

to those of logarithmic and elliptic functions . . . and he
has arrived at the following theorem:

If we have several functions whose derivatives can be
roots of one and the same cdgebraic equation, all of whose
coefficients are rational functions of one variable, we can
always express the sum of any number of such functions

by an algebraic and logarithmic function, provided that we
establish a certain number of algebraic relations between
the variables of the functions in question.

The number of these relations does not depend at all

upon the number of functions, but only upon the nature of
the particular functions considered. . .

.

* Libri, a soi-disant mathematician, who saw the work through the

press, adds, “by permission ofthe Academy’, a smug footnote acknow-
ledging the genius of the lamented Abel. This is the last straw; the

Academy might have come out with all the facts or have held its

official tongue. But at all costs the honour and dignity of a stuifed

shirt must be upheld. Finally it may be recalled that valuable manu-
scripts and books had an unaccountable trick ofvanishingwhen Libri

was round.
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The theorem which Abel thus briefly describes is to-day

Imawn as Abel’s Theorem. His proof of it has been described as

nothing more than ‘a marvellous exercise in the integral

calculus’. As in his algebra, so in his analysis, Abel attained his

proof with a superb parsimony. The proof, it may be said with-

out exaggeration, is well within the purview of any seventeen-

year-old who has been through a good first course in the calcu-

lus. There is nothing high-falutin’ about the classic simplicity

of Abel’s own proof. The like cannot be said for some of the

nineteenth-century expansions and geometrical reworkings of

the original proof. Abel’s proof is like a statue by Phidias; some
of the others resemble a Gothic cathedral smothered in Irish

lace, Italian confetti, and French pastry.

There is ground for a possible misimderstanding in Abel’s

opening paragraph. Abel no doubt was merely being Mndly
courteous to an old man who had patronized him - in the bad
sense - on first acquaintance, but who, nevertheless, had spent
most of his long working life on an important problem without
seeing what it was all about. It is not true that Legendre had
discussed the elliptic functions^ as Abel’s words might imply;
what Legendre spent most of his life over was elliptic integrals

which are as different from elliptic functions as a horse is from
the cart it pulls, and therein precisely is the crux and the germ
of one of Abel’s greatest contributions to mathematics. The
matter is quite simple to anyone who has had a school course in

trigonometry; to obviate tedious explanations of elementary
matters this much will be assumed in what follows presently.
For those who have forgotten all about trigonometry, how-

ever, the essence, the methodology^ of Abel’s epochal advance
can be analogized thus. "VVe alluded to the cart and the horse.
The frowsy proverb about putting the cart before the horse
describes what Legendre did; Abel saw that if the cart was to
move forward the horse should precede it. To take another
instance; Francis Galton, in his statistical studies of the relation
between poverty and chronic drunkenness, was led, by bis
impartial mind, to a reconsideration of all the self-righteous
pktitudes bywhich indignant moralists and economic crusaders
with an axe to grind evaluate such social phenomena. Instead
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of assuming that people are depraved because they drink to

excess, Galton inverted this hypothesis and assumed temporarily

that people drink to excess because they have inherited no moral

guts from their ancestors, in short, because they are depraved.

Brushing aside all the vaporous moralizing of the reformers,

Galton took a firm grip on a scientific, unemotional, workable

hypothesis to which he could apply the impartial machinery of

mathematics. His work has not yet registered socially. For the

moment we need note only that Galton, like Abel, inverted his

problem - turned it upside-down and inside-out, back-end-to

and foremost-end-backward. Like Hiawatha and his fabulous

mittens, Galton put the skinside inside and the inside outside.

All this is far from being obvious or a triviality. It is one of

the most powerful methods of mathematical discovery (or

invention) ever demised, and Abel was the first human being to

use it consciously as an engine of research. ‘You must always

invert’, as Jacobi said when asked the secret of his mathema-
tical discoveries. He was recalling what Abel and he had done.

If the solution of a problem becomes hopelessly involved, try

turning the problem backwards, put the quaesita for the data

and vice versa. Thus if we find Cardan’s character incompre-

hensible when we think of him as a son of his father, shift the

emphasis, invert it, and see what we get when we analyse

Cardan’s father as the begetter and endower of his son. Instead

of studying ‘inheritance’ concentrate on ‘endowing’. To return

to those who remember some trigonometry.

Suppose mathematicians had been so blind as not to see that

sin X, cos X and the other direct trigonometric functions are

simpler to use, in the addition formulae and elsewhere, than the

inverse functions sin“^ x, cos~^ x. Recall the formula sin {x -f y)

in terms of sines and cosines ofx and y, and contrast it with the

formula for shr^ {x-\-y) in terms of x and y. Is not the former

incomparably simpler, more elegant, more ‘natural’ than the

latter? Now, in the integral calculus, the inverse trigonometric

functions present themselves naturally as definite integrals 'of

simple algebraic irrationalities (second degree); such integrals

appear when we seek to find the length of an arc of a circle by
means of the integral calculus. Suppose the inverse trigono-
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metric factions Iiad first presented
‘ themselves this way.

Would it not have been ‘more natural’ to consider the inverses

of these functions, that is, the faimhar trigonometric functions

themselves as the given functions to be studied and analysed?

Undoubtedly; but in shoals of more advanced problems, the

simplest of which is that of finding the length of the arc of an

ellipse by the integral calculus, the awkward inverse elliptic’

(not ‘circular’, as for the arc of a circle) functions presented

themselves It took Abel to see that these functions should

be ‘inverted* and studied, precisely as in the case of sin x, cos x

instead of sin”^ x, cos"^ x. Simple, was it not? Yet Legendre, a

great mathematician, spent more than forty years over his

"elliptic integrals’ (the awkward ‘inverse functions’ of his

problem) without ever once sui^ecting that he should invert*

This ejrtxemely simple, uncommonsensical way of looking at an

apparently simple but profoundly recondite problem was one

of the greatest mathematical advances of the nineteenth

centmv'.

All this however was but the beginning, although a suffi-

ciently tremendous beginning — like Kipling’s dawn coming up

like thunder - of what Abel did in his magnificent theorem and

in his work on elliptic functions. The trigonometric or circular

functions have h single real period, thus sin {x + 2ir) = sin a?,

etc. Abel discovered that his new functions provided by the

inversion of an elliptic integral have precisely two periods,

whose ratio is imaginary. After that, Abel’s followers in this

direction - Jacobi, Rosenhain, Weierstrass, Biemann, and

many more - mined deeply into Abel’s great theorem and by
carrying on and extending his ideas discovered functions of n
variables having 2n periods. Abel himself carried the exploita-

tion of his discoveries far. His successors have applied all this

work to geometry, mechanics, parts of mathematical physics,

and other tracts of mathematics, solving impctont problems

* In ascribing priority to Abel, rather than ‘Joint discovery’ to Abel

and Jacobi, in this matter, I have followed Mittag-Leffler. From a
thorough acquaintance with all the published evidence, J am con-

vinced that Abel’s claim is indisputable, although Jacobi’s com-
patriots ajgue otherwise.
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which^ Tsithout this work initiated by Abel, would have been

unsolvable.

While in Paris Abel consulted good physicians for what he

thought was merely a persistent cold. He was told that he had

tuberculosis of the lungs. He refused to believe it, wiped the

mud of Paris off his boots, and returned to Berlin for a short

visit. His funds were running low; about seven dollars was the

extent of his fortune. An urgent letter brought a loan from

Holmboe after some delay. It must not be supposed that Abel

was a chronic borrower on no prospects. He had good reason

for believing that he should have a paying job when he got

home. Moreover, money was still owed to him. On Holmboe’s

loan of about sixty dollars Abel existed and researched from

March till May 1827. Then, all his resources exhausted, he

turned homeward and arrived in Kristiania completely

destitute.

But all was soon to be rosy, he hoped. Surely the University

job would be forthcoming now. His genius had begun to be

recognized. There was a vacancy. Abel did not get it, Holmboe
reluctantly took the vacant chair which he had intended Abel

to fill only after the governing board threatened to import a

foreigner if Holmboe did not take it, Holmboe was in no way
to blame. It was assumed that Holmboe would be a better

teacher than Abel, although Abel had amply demonstrated his

ability to teach. Anyone familiar with the current American
pedagogical theory, fostered by professional Schools of Educa-
tion, that the less a man knows about what he is to teach the

better he will teach it, will understand the situation perfectly.

Nevertheless things did brighten up. The University paid

Abel the balance of what it owed on his travel money and
Holmboe sent pupils bis way. The professor of astronomy took

a leave of absence and suggested that Abel he employed to

cany part of his work. A well-to-do couple, the ScLjeldnips,

took him in and treated him as if he were their own son. But
with all this he could not free himself of the burden of his

dependents. To the last they clung to him, leaving him prac-

tically nothing for himself, and to the last he never uttered an
impatient word.
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By tile middle of January 1829 Abel knew that he had not
long to Ive. The eTldence of a haemorrhage is not to be denied*
T. will fight for my life!* he shouted in his delirium. But in more
tranquil moments, exhausted and trying to work, he drooped
"like a sick eagle looking at the sun’, knowing that his weeks
were numbered.

Abel spent Ms last days at Froland, in the home of an English
family where his fiancee (Crelly Kemp) was

. governess. His last

thoughts were for her future, and he wrote to his friend
Kielhaii, "She is not beautiful; she has red hair and freckles, but
she is an admirable woman.’ It was Abel’s wish that Crelly and
Eaelnau should marry after Ms death; and although the two
had never met, the^^ did as Abel had half-jokingiy proposed.
Toward the last Crelly insisted on taking care of Abel without
help, ‘to possess these last moments alone’. Early in the morn-
ing of 6 April 1829 he died, aged twenty-six years, eight
months.

Twro days after Abel s death Crelle wrote to say that Ms
negotiations had at last proved successful and that Abel would
he appointed to the professorsMp of mathematics in the
University of Berlin.



CHAPTER EIGHTEEN

THE GREAT ALGORIST

Jacobi

*

The name Jacobi appears frequently in the sciences, not always

meaning the same man. In the 1840’s one very notorious Jacobi

- M. H. - had a comparatively obscure brother, C. G. J.?

whose reputation then was but a tithe of M. H.*s. To-day the

situation is reversed: C. G. J. is immortal - or seemingly so,

while M. H. is rapidly receding into the obscurity of limbo.

M. H. achieved fame as the founder of the fashionable quackery

of galvanoplastics; C. G. J.’s much narrower but also much
higher reputation is based on mathematics. During his lifetime

the mathematician was always being confused with his more

famous brother, or worse, being congratulated for his involun-

tary kinship to the sincerely deluded quack. At last C. G. J.

could stand it no longer. ‘Pardon me, beautiful lady% he

retorted to an enthusiastic admirer of M. H. who had compli-

mented him on ha^dng so distinguished a brother, ‘but Iammy
brother.’ On other occasions C. G. J. would blurt out, ‘I am not

his brother, he is mine\ There is where fame has left the rela-

tionship to-day.

Carl Gustav Jacob Jacobi, bom at Potsdam, Prussia, Ger-

many, on 10 December 1804 was the second son of a prosperous

banker, Simon Jacobi, and his wife (family name Lehmann).

There were in ail four children, three boys, Moritz, Carl, and

Eduard, and a girl, Therese. Carl’s first teacher was one of his

maternal uncles, who taught the boy classics and mathematics,

preparing him to enter the Potsdam Gymnasium in 1816 in his

twelfth year. From the first Jacobi gave evidence of the

‘universal mind’ which the rector of the Gymnasium declared

him to be on his leaving the school in 1821 to enter the Univer-

sity of Berlin. like Gauss, Jacobi could easily have made a
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high reputation in philology had not mathematics attracted

him more strongly. Having seen that the boy had mathematical
genius, the teacher (Heinrich Bauer) let Jacobi work by himself

- after a prolonged tussle in which Jacobi rebelled at learning

mathematics by rote and by rule.

Young Jacobi’s mathematical development was in some
respects curiously parallel to that of his greater rival Abel.

Jacobi also went to the masters; the works of Euler and
Lagrange taught him algebra and the calculus, and introduced

him to the theory of numbers. This earliest self-instruction was
to give Jacobi’s first outstanding work - in elliptic functions -

its definite direction, for Euler, the master of ingenious devices,

found in Jacobi his brilliant successor. For sheer manipulative
ability in tangled algebra Euler and Jacobi have had no rival,

unless it be the Indian mathematical genius, Srinivasa Rama-
nujan, in our own century. Abel also could handle formulae
like a master when he wished, but his genius was more philo-
sophical, less formal than Jacobi’s. Abel is closer to Gauss in
his insistence upon rigour than Jacobi was by nature - not that
Jacobi’s work lacked rigour, for it did not, but its inspiration
appears to have been formalistic rather than rigoristic.

Abel was two years older than Jacobi Unaware that Abel
had attacked the general quintic in 1820, Jacobi in the same
year attempted a solution, reducing the general quintic to the
fotmflj* - —pandshowingthatthesolutiQnofthisequa-
tion would follow from that ofa certain equation of the tenth
degree. Although the attempt was abortive it taught Jacobi a
great deal of algebra and he ascribed considerable importance
to it as a step in his mathematical education. But it does not
seem to have occurred to him, as it did to Abel, that the general
quintio might be unsolvable algebraicafly. This oversight, or
lack of imagination, or whatever we wish to call it, on Jacobi’s
part ia typical of the difference between him and Abel. Jacobi,
who had a magnificently objective mind mid not a particle of
envy or jeakni^ in his generous nature, himself said of one of
Abel s masterpieces, ‘It is above my praises as it is above my
own works.*

Jaoobfs student days at Berlin lasted from April 1821 tom
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May 1825. During the first two years he spent his time about

equally betw^n philosophy, philology, and mathematics. In

the philological seminar Jacobi attracted the favourable atten-

tion of P. A. Boeckh, a renowned classical scholar who brought

out (among other works) a fine edition of Pindar. Boeckh,

luckily for mathematics, failed to convert his most promising

pupil to classical studies as a life interest. In mathematics not

much was offered for an ambitious student and Jacobi con-

tinued his private study of the masters. The university lectures

in mathematics he characterized briefly and sufficiently as

twaddle. Jacobi was usually blunt and to the point, although

he knew how to be as subservient as any courtier when trying

to insinuate some deserving mathematical friend into a worthy

position.

While Jacobi was diligently making a mathematician of

himself Abel was already weU started on the very road which

was to lead Jacobi to fame. Abel had written to Holmhoe on

4 August 1823 that he was busy with elliptic functions: ‘This

little work, you will recall, deals with the inverses of the

elliptic transcendents, and I proved something [that seemed]

impossible; I begged Degen to read it as soon as he could from

one end to the other, but he could find no false conclusion, nor

understand where the mistake was;' God knows how I shall get

myself out of it.’ By a curious coincidence Jacobi at last made

up his mind to put his all on mathematics almost exactly when
Abel wrote this. Two years’ difference in the ages of young men
around twenty (Abel was twenty-one, Jacobi nineteen) count

for more than two decades of maturity. Abel got a tremendous

start but Jacobi, unaware that he had a competitor in the race,

soon caught up. Jacobi’s first great work was in Abel’s field of

elliptic functions. Before considering this we shall outline his

busy life.

Having decided to go into mathematics for all he was worth,

Jacobi wrote to his uncle Lehmann his estimate of the labour

he had undertaken. ‘The huge colossus which the works of

Euler, Lagrange, and Laplace have raised demands the most

prodigious force and exertion of thought if one is to penetrate

into its inner nature and not merely rummage about on its
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surface. To dominate this colossus and not to fear being

crushed by it demands a strain which permits neither rest nor

peace till one stands on top of it and surveys the work in its

entirety. Then only, when one has comprehended its spirit, is

it possible to work justly and in peace at the completion of its

details.’

With this declaration of willing servitude Jacobi forthwith

became one ofthe most terrific workers in the history of mathe-

matics. To a timid friend who complained that scientific

research is exacting and likely to impair bodily health, Jacobi

retorted:

‘Of course! Certainly I have sometimes endangeredmy health

by overwork, but what of it? Only cabbages have no nerves,

no worries. And what do they get out of their perfect well-

being?’

In August 1825 Jacobi received his Ph.D. degree for a disser-

tation on partial fractions and allied topics. There is no need to

explain the nature of this - it is not of any great interest and is

now a detail in the second course of algebra or the integral

calculus. Although Jacobi handled the general case of his

problem and showed considerable ingenuity in manipulating
formulae, it cannot be said that the dissertation exhibited any
marked originality or gave any definite hint of the author’s

superb talent. Concurrently with his examination for the Ph.D.
degree, Jacobi roxmded off his training for the teaching pro-
fession.

After Ms degree Jacobi lectured at the University of Berlin
on the applications of the calculus to curved surfaces and
twisted curves (roughly, curves determined by the intersections
of surfaces). From the very first lectures it was evident that
Jacobi was a bom teacher. Later, when he began developing his
own ideas at an amazing speed, he became the most inspiring
mathematical teacher of his time.

Jacobi seems to have been the first regular mathematical
instructor in a university to train students in research by
lecturing on his own latest discoveries and letting the students
see the creation of a new subject taking place before them. He
believed in pitching young mmx into the icy water to learn to
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swim or drown by themselves. Many students put off attempt-

ing anything on their own account till they have mastered

everything relating to their problem that has been done

by others. The result is that but few ever acquire the knack

of independent work. Jacobi combated this dilatory erudition.

To drive home the point to a gifted but diffident young man
who was always putting off doing anything imtil he had learned

something more, Jacobi delivered himself of the following

parable. ‘Your father would never have married, and you

wouldn’t be here now, ifhe had insisted on knowing all the girls

in the world before marrying one.’

Jacobi’s entire life was spent in teaching and research except

for one ghastly interlude, to be related, and occasional trips to

attend scientific meetings in England and on the Continent, or

forced vacations to recuperate after too intensive work. The
chronology of his life is not very exciting - a professional

scientist’s seldom is, except to himself.

Jacobi’s talents as a teacher secured him the position of

lecturer at the University of Konigsberg in 1826 after only half

a year in a similar position at Berlin. A year later some results

which Jacobi had published in the theory of numbers (relating

to cubic reciprocity; see chapter on Gauss) excited Gauss’

admiration. As Gauss was not an easy man to stir up, the

Ministry of Education took prompt notice and promoted

Jacobi over the heads of his colleagues to an assistant profes-

sorship - quite a step for a young man of twenty-three. Natu-

rally the men he had stepped over resented the promotion; but

two years later (1829) when Jacobi published his first master-

piece, Fundamenta Nova Theoriae Functionum Ellipticanim

(New Foundations of the Theory of Elliptic Functions) they

were the first to say that no more than justice had been done

and to congratulate their brilliant young colleague.

In 1832 Jacobi’s father died. Up till this he need not have

worked for a living. His prosperity continued about eight years

longer, when the family fortune went to smash in 1840. Jacobi

was cleaned out himself at the age of thirty-six and in addition

had to provide for his mother, also ruined.

Gauss all this time had been watching Jacobi’s phenomenal
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activity with more than a mere scientific interest, as many of

Jacobi's discoveries overlapped some of those of his own youth

which he had never published. He had also (it is said) met the

young man personally: Jacobi called on Gauss (no account of

the visit has survived) in September 1839, on his return trip to

Konigsbeig after a vacation in Marienbad to recuperate from

overwork. Gauss appears to have feared that Jacobi’s financial

collapse would have a disastrous effect on his mathematics, but

Bessel reassured him: ‘Fortunately such a talent cannot be

destroyed, but I should have liked him to have the sense of

freedom which money assures.’

The loss of his fortune had no effect whatever on Jacobi’s

mathematics. He never alluded to his reverses but kept on

working as assiduously as ever. In 1842 Jacobi and Bessel

attended the meeting of the Briti^ Association at Manchester,

where the German Jacobi and the Irish Hamilton met in the

fiesh- It was to be one of Jacobi’s greatest glories to continue

the work of Hamilton in dynamics and, in a sense, to complete

what the Irishman had abandoned in favour of a will-o-the"

wisp (which will be followed when we come to it).

At this point in his career Jacobi suddenly attempted to

blossom out into something showier than a mere mathemati-
daii. Not to interrupt the story of his scientific life when we
take it up, we shall dispose here of the illustrious mathemati-
cian’s singular misadventures in politics.

The year following his return from the trip of 1842, Jacobi
had a complete breakdown from overwork. The advancement
of science in the 1840’s in Germany was in the hands of the
benevolent princes and kings of the petty states which were
later to coalesce into the German Empire. Jacobi’s good angel
was the King of Prussia, who seems to have appreciated fiiy
the honour which Jacobi’s researches conferred on the Eung-
dtm. Accordingly, when Jacobi fell ill, the benevolent
urged him to take as long a vacation as he liked in the mild
climate of Italy. After five months at Rome and Naples with
Borchardt (whom we shall meet later in the company of Weier-
stxass) and Dirichlet, Jacobi returned to Berlin in June 1844.
He was now permitted to stay on in Berlin until his health
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should be completely restored but, owing to jealousies, was not

given a professorship in the University, although as a member
of the Academy he was permitted to lecture on anything he

chose. Further, out of his own pocket, practically, the King

granted Jacobi a substantial allowance.

After all this generosity on the part of the King one might

think that Jacobi would have stuck to his mathematics. But on
the utterly imbecile advice of his physician he began meddling

in politics ‘to benefit his nervous system’. If ever a more idiotic

prescription was handed out by a doctor to a patient whose

complaint he could not diagnose it has yet to be exhumed.

Jacobi swallowed the dose. When the democratic upheaval of

1848 began to erupt Jacobi was ripe for office. On the advice of

a friend - who, by the way, happened to be one of the men over

whose head Jacobi had been promoted some twenty years

before - the guileless mathematician stepped into the arena of

politics with all the innocence of an enticingly plump mis-

sionary setting foot on a cannibal island. They got him.

The mildly liberal club to w'hich his slick friend had intro-

duced him ran Jacobi as their candidate for the May election

of 1848. But he never saw the inside of parliament. His elo-

quence before the club comnnced the wiser members that

Jacobi was no candidate for them. Quite properly, it would

seem, they pointed out that Jacobi, the King’s pensioner,

might possibly be the liberal he now professed to be, but that

it was more probable he was a trimmer, a turncoat, and a stool

pigeon for the royalists. Jacobi refuted tlaese base insinuations

in a magnificent speech packed with irrefutable logic - oblivious

of the axiom that logic is the last thing on earth for which a
practical politician has any use. They let him hang himself in

his own noose. He was not elected. Nor was his nervous system

benefited by the uproar over his candidacy ’which rocked the

beer halls of Berlin to their cellars.

Worse was to come. Who can blame the Minister of Educa-

tion for enquiring the following IMay whether Jacobi’s health

had recovered sufficiently for him to return safely to Kdnigs-

berg? Or who can wonder that his allowance from the King was

stopped a few days later? After all even a King may be per-
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mitted ashow of petulance when the mouth he tries to feed bites

him. Nevertheless Jacobi’s desperate plight was enough to

escite anybody’s sympathy. Married and practically penniless

he had seven small children to support in addition to his wife.

A Mend in Gotha took in the wife and children, while Jacobi

retired to a dingy hotel room to continue his researches.

He was now (1849) in his forty-fifth year and, except for

Gauss, the most famous mathematician in Europe. Hearing of

his plight, the University of Vienna began angling for him. As

an item of interest here, Littrow, Abel’s Viennese Mend, took

a leading part in the negotiations. At last, when a definite and

generous offer was tendered, Alexander von Humboldt talked

the sulky King round; the allowanee was restored, and Jacobi

was not permitted to rob Germany of her second greatest man.
He remained in Berlin, onw more in favour but definitely out

of politi<^.

The subject, elliptic functions, in which Jacobi did his first

great work, has already been given what may seem like its

fhare of space; for after all it is to-day more or less of a detail in

the vaster theory of functions of a complex variable which, in

its turn, is fading from the ever changing scene as a thing of

living interest. As the theory of elliptic functions will be men-
tioned several times in succeeding chapters we shall attempt a
brief justification of its apparently unmerited prominence.
No mathematician would dispute the claim of the theory of

functions of a complex variable to have been one of the major
fields of nineteenth-century mathematics. One of the reasons
why this theory was of such importance may he repeated here.
Gauss had shown that coinpleas numbers are both necessaiy' and
sufficient to provide every algebraic equation with a root. Are
any further, more general, kinds of 'numbers’ possible? How
mi^t such ‘numbers’ arise?

Instead of regarding omvplex numbers as having first pre-
sented themselves in the attempt to solve certain simple
equations, say a;* + 1 s=r o, we may also see their origin in
another problem of elementary algebra, that of factonzation.
To r^lve ^ y* into factors of the first degree we need
nothing more mysterious than the positive and negative
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integers: (a3® — y^) = (ss y) (x — y)

,

But the same problem for

^2 _!_ y
2 demands ‘imaginaries’: y^ = {ce + yV — 1)

{x — yV — 1), Carrying this up a step in one of many possible

ways open, we might seek to resolve + 2- into two
factors of the first degree. Are the positives, negatives, and
imaginaxies sufficient? Or must some new kind of ‘number’ be

invented to solve the problem? The latter is the case. It was
found that for the new ‘numbers’ necessary the rules of common
algebra break down in one important particular: it is no longer

true that the order in which ‘numbers’ are rmdtvplied together is

indifierent; that is, for the new numbers it is not true that a X &

is equal to h x fl. More will be said on this when w'e come to

Hamilton. For the moment we note that the elementary alge-

braic problem of factorization quickly leads us into regions

where complex numbers are inadequate.

How far can we go, what are the most general numbers
possible, ifwe insist that for these numbers all the familiar laws

of common algebra are to hold? It was proved in the latter part

of the nineteenth century that the complex numbers x + iy,

where x,y are real numbers and z = V — 1, are the most
general for which common algebra is true. The real numbers,
we recall, correspond to the distances measured along a fixed

straight line in either direction (positive, negative) from a fixed

point, and the graph of a fimction /(a;), plotted as 2/ = /(a), in

Cartesian geometry, gives us a picture of a function of a real

variable x. The mathematicians of the seventeenth and eigh-

teenth centuries imagined their functions as being of this kind.

But if the common algebra and its extensions into tlie calculus

which they applied to their functions are equally applicable to

complex numbers, which include the real numbers as a very
degenerate case, it was but natural that many of the things the
early analysts found were less than half the whole story

possible. In particular the integral calculus presented many
inexplicable anomalies which were cleared up only when the
field of operations was enlarged to its fullest possible extent and
functions of complex variables were introduced by Gauss and
Cauchy.

The importance of elliptic functions in all this vast and
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fundamental development cannot be over-estimated. Gauss,

Abel, and Jacobi, by their extensive and detailed elaboration

of the theory of elliptic functions, in which complex numbers

appear inevitably, provided a testing ground for the discovery

and improvement of general theorems in the theory of functions

of a complex variable. The two theories seemed to have been

designed by fate to complement and supplement one another -

there is a reason for this, also for the deep eoimexion of elliptic

functions with the Gaussian theory of quadratic forms, which

considerations of space force us to forego. Without the innu-

merable clues for a general theory provided by the special

instances of more inclusive theorems occurring in elliptic func-

tions, the theory of functions of a complex variable would have

developed much more dowly than it did - liouville’s theorem,

the entire subject of multiple periodicity with its impact on

the theory of algebraic functions and their integrals, may be

recalled to mathematical readers. If some of these great monu-
ments of nineteenth-century mathematics are already receding

into the mists of yesterday, we need only remind ourselves that

Picard’s theorem on exceptional values in the neighbourhood

of an essential singularity, one of the most suggestive in current

analysis, was first proved by devices originating in the theory

of elliptic functions. With this partial summary of the reason

why elliptic functions were important in the mathematics of

the nineteenth century we may pass on to Jacobi’s nardma.l

part in the development of the theory.

The history of elliptic functions is quite involved, and
although of considerable interest to specialists, is not likely to

appeal to the general reader. Accordingly we shall omit the

evidence (letters of G^uss, Abd, Jacobi, Legendre, and othem)
on which the following hare summaiy is based.

First, it is established that Gauss anticipated both Abel and
Jacobi by as much as twenty-seven years in some of their most
striking work. Indeed Gauss says that ‘Abd has followed
exactly the same road that I did in 1798’. That this AUim is just
wiD be admitted by anyone who will study the evidence pub-
lished only after Gauss’ death. Second, it seems to he agreed
that Abel antadpated Jacobi in certain important details, but
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that Jacobi made his great start in entire ignorance of his

rival’s work.

A capital property of the elliptic functions is their dovble

periodicity (discovered in 1825 by Abel): if E{x) is an elliptic

function, then there are two distinct numbers, say pgj such

that

E(x -{- Pi) = E(x), and E(x + P 2) = B{x)

for all values of the variable a?.

Finally, on the historical side, is the somewhat tragic part

played by Legendre. For forty years he had slaved over elliptic

integrals {not elliptic functions) without noticing what both

Abel and Jacobi saw almost at once, namely that by inverting

his point of view the whole subject would become infinitely

simpler. Elliptic integrals first present themselves in the pro-

blem of finding the length of an arc of an ellipse. To what was

said about inversion in connexion with Abel the following

statement in symbols may be added. This will bring out more

clearly the point which Legendre missed.

If R(t) denotes a polynomial in t, an integral of the type

is called an elliptic integral if R(t) is of either the third or the

fourth degree; if R(t) is of degree higher than the fourth, the

integral is called Abelian (after Abel, some of whose greatest

work concerned such Integrals). If R{t) is of only the second

degree, the integral can be calculated out in terms of elementary

functions. In particular

— "

—

dt == sin“^aj,

0 Vi -

(sin“% is read, ‘an angle whose sine is a’). That is, if

r-7^^J 0 Vl-i*

we consider the upper limiU ts, of the integral, as a function of

the integral itself, namely of y. This irwersion of the problem
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removed most of the dif&eulties 'which Legendre had grappled

with for forty years. The true theory of these important inte-

grals rushed forth almost of itself after this obstruction had
been removed - like a log-jam going down the river after the

king log has been snaked out.

When Legendre grasped what Abel and Jacobi had done he
encouraged them most cordially, although he realized that their

simpler approach (that of inversion) nullified what was to have
been his own masterpiece of forty years’ labour. For Abel, alas,

Legendre's praise came too late, but for Jacobi it was an
inspiration to surpass himself. In one of the finest correspon-

dences in the whole of scientific literature the young man in his

early twenties and the veteran in his late seventies strive to

outdo one another in sincere praise and gratitude. The only
jarring note is Legendre’s outspoken disparagement of Gauss,
whom Jacobi xdgorously defends. But as Gauss never con-
descended to publish his researches - he had planned a major
work on elliptic functions when Abel and Jacobi anticipated
him in publication- Legendre can hardly be blamed for holding
a totally mistaken opinion. For lack of space we must omit
extracts from this beautiful correspondence (the letters are
given in full in vol. 1 of Jacobi’s Werke - in French).
The joint creation with Abel ofthe theory of elliptic functions

was only a small if highly important part of Jacobi’s huge out-
put. Only to enumerate all the fields he enriched in his brief
working life of less than a quarter of a century would take more
space than can be devoted to one man in an account like the
present, so we shall merely mention a few of the other oreat
things he did.

^

Jacobi was the first to apply elliptie functions to the theory
of numbers. This was to become a favourite diversion with some
of the greatest mathematiciaiiLS who followed Jacobi. It is a
curiously recondite subject, where arabesques of ingenious
algebra unexpectedly reveal hitherto unsuspected relations
between the common whole numbers. It was by this means that
Ja(5obi proved the famous assertion of Fermat that every
integer 1,2,3, ... is a sum of four integer squares (zero being
counted as an integer) and, moreover, his beautiful analysis
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told WiTTi in how many ways any given integer may be expressed

as such a sum.*

For those whose tastes are more practical we may cite

Jacobi’s work in dynamics. In this subject, of fundamental

importance in both applied science and mathematical physics,

Jacobi made the first significant advance beyond Lagrange and

Hamilton. Readers acquainted with quantum mechanics will

recall the important part played in some presentations of that

revolutionary theory by the Hamilton-Jacobi equation. His

work in differential equations began a new era.

In algebra, to mention only one thing of many, Jacobi cast

the theory of determinants into the simple form now familiar

to every student in a second course of school algebra.

To the Newton-Laplace-Lagrange theory of attraction

Jacobi made substantial contributions by his beautiful investi-

gations on the functions which recur repeatedly in that theory

and by applications of elliptic and Abelian functions to the

attraction of ellipsoids.

Of a far higher order of originality is his great discovery in

Abelian functions. Such functions arise in the inversion of an

Abelian integral, in the same way that the elliptic functions

arise from the inversion of an elliptic integral. (The technical

terms were noted earlier in this chapter.) Here he had nothing

to guide him, and for long he wandered lost in a maze that had

no clue. The appropriate inverse functions in the simplest case

are functions of two variables ha\ing Jour periods; in the

general case the functions have n variables and 2n periods; the

elliptic functions correspond to n = 1. This discovery was to

nineteenth-century analysis what Columbus’ discovery of

America was to fifteenth-century geography.

Jacobi did not suffer an early death from overwork, as his

lazier friends predicted that he would, but from smallpox

(18 February 1851) in his forty-seventh year. In taking leave

of this large-minded man we may quote his retort to the great

French mathematical physicist Fourier, who had reproached

* If is odd, the number of ways is 8 times the sum of all the

divisors of n (1 and n included); if 72 is even, the number ofways is 24^

times the sum of all the odd divisors of n.
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both Abel and Jacobi for ‘wasting’ their time on elliptic func-

tions while there were still problems in heat-conduction to be

solved.

‘It is true’
, Jacobi says, ‘that M. Fourier had the opimon that :

the principal aim of mathematics was public utility and the
'

explanation of natural phenomena; but a philosopher like him
should have known that the sole end of science is the honour of '

the hiunan mind, and that under this title a question about'
'

numbers is worth as much as a question about the system, of the
';

world.’

If Fourier could re'^dsit the glimpses of the moon he might be
disgusted at what has happened to the analysis he invented for

‘pubic utilty and the explanation of natural phenomena’. So
far as mathematical physics is concerned Fourier analysis to-

day is hut a detaii in the infinitely vaster theory of boundary-
value problems, and it is in the purest of pure mathematics that

the analysis which Fourier invented finds its interest and its

justification. Whether ‘the human mind’ is honoured by these
modem researches may be put up to the experts - provided the
behaviourists have left anything of the human mind to be
honoured.



CHAPTEH XIXETEE!?^-

AN IRISH TRAGEDY

Hamilton

*

William eowan Hamilton is by long odds the greatest

man of science that Ireland has produced. His nationality is

emphasized because one of the drhing impulses behind Hamil-
ton's incessant activity was his avowed desire to put his superb
genius to such uses as would bring glory to his native land.

Some have claimed that he was of Scotch descent. Hamilton
himseK insisted that he was Irish, and it is certainly difficult for

a Scot to see anything Scotch in Ireland’s greatest and most
eloquent mathematician.

Hamilton’s father was a solicitor in Dublin, Ireland, where
William, the youngest of three brothers and one sister, was bom
on 3 August 1805.* The father was a first-rate business man
with an ‘exuberant eloquence’, a religious zealot, and last, but
unfortunately not least, a very convivial man, all of which
traits he passed on to his gifted son. Hamilton’s ertraordinary

intellectual brilliance was probably inherited from his mother,
Sarah Hutton, who came of a family well known for its brains.

However, on the father’s side, the swirling clouds of elo-

quence, ‘both of lips and pen’, which made the jolly toper the
life of every party he graced with his reeling presence, con-
densed into something less gaseous in William’s uncle, the
Reverend James Hamilton, curate of the village of Trim (about
twenty miles from Dublin). Uncle James was in fact an inhu-
manly accomplished linguist - Greek, Latin, Hebrew, Sanskrit,

Chaldee, Pali, and heaven knows what other heathen dialects,

* The date on his tombstone is 4 August, 1805. Actually he was
bom at midnight; hence the confusion in dates. Hamilton, who had
a passion for accuracy m such trifles, chose 3 August until in later

life he shifted to 4 August for sentimental reasons.
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came to the tip of Ms tongue as readily as the more civilized

languages of Continental Europe and Ireland. This polyglot

fluency played no inconsiderable part in the early and ex-

tremely extensive zniseducation of the hapless but eager

William, for at the age of three, having already given signs of

genius, he was relieved of his doting mother’s affection and

packed off by his somewhat stupid father to glut himself with

languages under the expert tutelage of the supervoiuble Uncle

James.

Hamilton’s parents had very little to do with his upbringing;

his mother died when he was twelve, his father two years later.

To James Hamilton belongs whatever credit there may be for

having wasted young William’s abilities in the acquisition of

utterly useless languages and turning him out, at the age of

thirteen, as one of the most shocking examples of a linguistic

monstrosiW in history. That Hamilton did not become an

insufferable prig under his misguided parson-uncle’s instruction

testifies to the essential soundness of his Irish common sense.

The education he suffered might well have made a per-

manent ass of even a humorous boy, and Hamilton had no

humour.

The tale of Hamilton’s infantile accomplishments reads like

a bad romance, but it is true; at three he was a superior reader

of English and was considerably advanced in arithmetic; at

four he was a good geographer; at five he read and translated

Latin, Greek, and Hebrew, and loved to recite yards ofDryden,
Collins, ^iilton, and Homer - the last in Greek; at eight he
added a mastery of Italian and French to his coUection and
extemporized fluently in Latin, expressing his unaffected

delight at the beauty of the Irish scene in Latin hexameters
when plain English prose offered too plebeian a vent for Ms
nobly exalted sentiments; and finally, before he was ten he had
laid a firm foundation for Ms extraordinary scholarsMp in

oriental languages by beginning Arabic and Sanskrit.

The tally of Hamilton’s languages is not ye»t complete. When
WBliam was three months under ten years old his uncle reports
that ‘His thirst for the Oriental languages is unabated. TTp> is

now master of most, indeed of all except the minor and com-
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paratively provincial ones. The Hebrew, Persian, and Arabic

are about to be confirmed by the superior and intimate acquain-

tance with the Sanskrit, in which he is already a proficient. The

Chaldee and Syriac he is grounded in, also the Hindoostani,

:Malay. Mahratta, Bengali, and others. He is about to commence

the Chinese, but the difficulty of procuring books is very great

It cost me a large sum to supply him from London, but I hope

the money w’as well expended.’ To which we can only throw up

our hands and ejaculate Good God! ^Vliat was the sense of it all?

By thirteen WiUiam was able to brag that he had mastered

one language for each year he had lived. At fourteen he com-

posed a flowery welcome in Persian to the Persian Ambassador,

then visiting Dublin, and had it transmitted to the astonished

potentate. "Wishing to follow up his advantage and slay the

already slain, young Hamilton called on the Ambassador, but

that wily oriental, forewarned by his faithful secretary, ‘much

regretted that on account of a bad headache he was unable to

receive me [Hamilton] personally.’ Perhaps the Ambassador

had not yet recovered from the official banquet, or he may have

read the letter. In translation at least it is pretty awful - just

the sort of thing a boy of fourteen, taking himself with devas-

tating seriousness and acquainted with aU the stickiest and

most bombastic passages of the Persian poets, might imagine a

sophisticated oriental out on a wild Irish spree would relish as

a pick-me-up the morning after. Had young Hamilton really

wished to vdew the Ambassador he should have sent in a salt

herring, not a Persian poem.

Except for his amazing ability, the maturity of his conversa-

tion and his poetical love of nature in all her moods, Hamilton

was like any other healthy boy. He delighted in swimming and

had none of the grind’s interesting if somewhat repulsive pallor.

His disposition was genial and his temper - rather unusually so

for a sturdy Irish boy - invariably even. In later life, however,

Hamilton showed Ins Irish by challenging a detractor - who had

called him a liar - to mortal combat. But the affair was amic-

ably arranged by Hamilton’s second, and Sir WiUiam cannot

be legitimately counted as one of the great mathematical

dueUists. In other respects young Hamilton was not a normal
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boy. The infliction of pain or suffering on beast or man he would

not tolerate. All his life Hamilton loved animals and, what is

regrettably rarer, respected them as equals.

Hamilton's redemption from senseless devotion to useless

languages began when he was twelve and was completed before

he was fourteen. The humble instrument selected by Providence

to turn Hamilton from the path of error was the American

calculating boy. Zerah Colburn (1804-39), who at the time had

been attending Westminster School in London. Colburn and

Hamilton were brought together in the expectation that the

young Irish genius would be able to penetrate the secret of the

American's methods, which Colburn himself did not fully

understand fas was seen in the chapter on Fermat). Colburn

was entirely frank in exposing his tricks to Hamilton, w^ho in

his turn improved upon what he had been shown. There was
but little abstruse or remarkable about Colburn’s methods. His

feats were largely a matter of memory. Hamilton’s
.
acknow-

ledgement of Colburn's influence occurs in a letter written when
he was seventeen (August 1822) to his cousin Arthur.

By the age of seventeen Hamilton had mastered mathe-
matics through the integral calculus and had acquired enough
mathematical astronomy to be able to calculate eclipses. He
read Newton and Lagrange. All this was his recreation; the

classics were still his serious study, although only a second love.

"SMiat is more important, he had already made ‘’some curious

discoreri€S% as he wrote to his sister Eliza.

The discoveries to which BLamilton refers are probably the
germs of his first great work, that on systems of rays in optics.

Thus in his seventeenth year Hamilton had already begun his

career of fundamental discove]y\ Before this he had brought
himself to the attention ofDr Brinkley, Professor ofAstronomy
at Dublin, by the detection of an error in Laplace’s attempted
proof of the parallelogram of forces.

Hamilton never attended any school before going to the Unh
versity but received all his preliminary training from his uncle
and by private study. His forced devotion to the classics in

preparation for the entrance examinations to Trinity College,
Dublin, did not absorb all of his time, for on 31 May 1823, he
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writes to his cousin Arthur, 'In Optics I have made a very

curious discovery - at least it seems so to me. . .

.

'

If, as has been supposed- this refers to the •characteristic

function'- which Hamilton will presently describe for us, the

discover}' marks its author as the equal of any mathematician

in history for genuine precocity. On 7 July 1823 young Hamil-

ton passed, easily first out of 100 candidates, into Trinity

College. His fame had preceded liim. and as was only to be

expected, he quickly became a celebrity: indeed his classical

and mathematical prowess, while he was yet an undergraduate,

excited the curiosity of academic circles in England and Scot-

land as well as in Ireland, and it was even declared by some that

a second Nevlon had arrived. The tale of his undergraduate

triimiphs can be imagined - he carried off practically all the

available prizes and obtained the highest honours in both

classics and mathematics. But more important than all these

triumphs- he completed the first draft of Part I of his epoch-

making memoir on sj’stems of rays. ‘This young man’, Dr
Brinkley remarked, when Hamilton presented his memoir to

the Royal Irish Academy, 'I do not say zcill be, but fs, the first

mathematician of his age.’

Even his laborious drudgeries to sustain his brilliant acade-

mic record and the hours spent more profitably on research did

not absorb all of young Hamilton’s superabundant energies. At
nineteen he experienced the first of his three serious love affairs.

Being conscious of his own '•unworthiness' - especially as con-

cerned his material prospects - William contented himself with

T;\Titing poems to the young lady, with the usual result: a

solider, more prosaic man married the girl. Early in May 1825

Hamilton learned from his sweetheart’s mother that his love

had married his rival. Some idea of the shock he experienced

caii be inferred from the fact that Hamilton, a deeply religious

man to whom suicide was a deadly sin, was tempted to drown
himself. Fortunately for science he solaced himself with another

poem. All his life Hamilton was a prolific versifier. But his true

poetry, as he told his friend and ardent admirer, William

Wordsworth, was his mathematics. From this no mathemati-

cian will dissent.
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We may dispose here of Hamilton's lifelong friendships with

some of the shining literary lights of his day - the poets Words-

worth, Southey, and Coleridge, of the so-called Lake School,

Aubrey de Tere, and the didactic novelist Maria Edgeworth, a

lixteratrice after Hamilton's own pious heart. Wordsworth and

Hamilton first met on the latter's trip of September 1827 to the

English Lake District. Hax-ing ‘waited on ordsworth at tea\

Hamilton oscDlated back and forth %vith the poet all night, each

desperately tn*ing to see the other home. The following day

Hamilton sent Wordsworth a poem of ninety iron lines which

the poet himself might have warbled in one of his heavier

flights. Naturally Wordsworth did not relish the eager young

mathematician's unconscious plagiarism, and after damning it

'with faint praise, proceeded to tell the hopeful author — at great

length “ that ‘the workmanship (what else could be expected

from so young a writer?) is not what it ought to be.’ Two years

later, when Hamilton was already installed as astronomer at

the Dunsink Observ^atory, Wordsworth returned the xusit.

Hamilton's sister Eliza, on being introduced to the poet, felt

herself 'involuntarily parodying the first lines of his own poem

Yarrozc Visited:

And this is Wordsworth ! this the man
Of’xJu^m mijfiiHCij cherished

So faithfiilltj a leaking dream.

An image that hath perished

!

One great benefit accrued from Wordsworth's xisit: Hamilton

realized at last that 'his path must be the path of Science, and

not that of Poetiy^; that he must renounce the hope of habi-

tually cultivating both, and that, therefore, he must brace him-

self up to bid a painful farewell to Poetry'. In short, Hamilton

grasped the ob^ious truth that there was not a spark of poetry

in him, in the literary sense. Nevertheless he continued to ver-

sify all his life. Wordsworth’s opinion of Hamilton’s intellect

was hlglt. In fact he graciously said (in efiect) that only two
men he had ever known gave him a feeling of inferiority,

Coleridge and Hamilton.

Hamilton did not meet Coleridge till 183’2, when the poet had
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piaetically ceased to be anything but a spurious copy of a

mediocre German metaphysician. Nevertheless each formed a

high estimate of the other's capacity, as Hamilton had for long

been a devoted student of Kant in the original. Indeed philo-

sophical speculation always fascinated Hamilton, and at one

time he declared himself a wholehearted believer - intellec-

tually, but not intestinally - in Berkeley's de\dtalized idealism.

Another bond between the t'wo was their preoccupation with

the theological side of philosophy (if there is such a side), and

Coleridge favoured Hamilton 'wdth his half-digested rumina-

tions on the Holy Trinity, by which the devout mathematician

set considerable store.

The close of Hamilton's undergraduate career at Trinity

College was even more spectacular than its beginning; in fact it

was unique in university annals. Dr Brinkley resigned his pro-

fessorship of astronomy to become Bishop of Cloyne. According

to the usual British custom the vacancy was advertised, and
several distinguished astronomers, including George Biddell

Airy (1801-92), later Astronomer Royal of England, sent in

their credentials. After, some discussion the Governing Board
passed over all the applicants and unanimously elected Hamil-

ton, then (1827) an undergraduate of twenty-two, to the

professorship. Hamilton had not applied. ’Straight was the path

of gold’ for him now, and Hamilton resolved not to disappoint

the hopes of his enthusiastic electors. Since the age of fourteen

he had had a passion for astronomy, and once as a boy he had
pointed out the Obser^’atory on its hill at Dunsink, command-
ing a beautiful ^dew, as the place of all others where he would
like to live were he free to choose. He now, at the age of

twenty-two, had his ambition by the bit; all he had to do was
to ride straight ahead.

He started brilliantly. Although Hamilton was no prac-

tical astronomer, and although his assistant observ'er was
incompetent, these drawbacks were not serious. From its

situation the Dunsink Obsers’atory could never have cut any
important figure in modern astronomy, and Hamilton did

wisely in putting his major efforts on his mathematics. At the

age of twenty-three he published the completion of the "curious
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discoveries' he had made as a boy of seventeen, Part I of ^
Theory of Systems of Rays, the great classic which does for

optics what Lagrange's Mecanique analytique does for mechan-

ics and which, in Hamilton's own hands, was to be extended to

d^maniie*, putting that fundamental science in what is perhaps

its ultimate, pertect form.

The techniques which Hamilton introduced into applied

mathematics in tliLs, his first masterpiece, are to-day indispen-

«^abie in mathematical physics, and it is the aim of many
workers in particular branches of theoretical physics to sum up

tne whole of a theory in a Hamiltonian principle. This magnifi-

cent work is that 'which caused Jacobi, fourteen years later at

the British Association meeting at Manchester in 1842, to assert

that ‘Hamilton is the Lagrange of your country’-’ - (meaning of

the English-speaking race). As Hamilton himself took great

pains to describe the essence of his new methods in terms com-

prehensible to non-speeialists, we shall quote from his own
abstract presented to the Royal Irish Academy on 23 April

1827.

*A Ray, in Optics, is to be considered here as a straight or

bent or eur\-ed line, along w^hich light is propagated; and a

System of Rays as a collection or aggregate of such lines, con-

nected by some common bond, some similarity of origin or

production, in short some optical unity. Thus the rays which
diverge from a luminous point compose one optical system, and,

after they have been reflected at a mirror, they compose
another. To investigate the geometrical relations of the rays of

a system ofwhich we know (as in these simple cases) the optical

origin and historj", to inquire how they are disposed among
themselves, how they diverge or converge, or are parallel, w'hat

surfaces or curs’es they touch or cut, and at what angles of

section, how they can be combined in partial pencils, and how
each ray in particular can be determined and distinguished
from every other, is to study that System of Rays. And to
generalize this study of one srjr’stem so as to become able to pass,
without change of plan, to the study of other systems, to assign
general rules and a general method whereby these separate
optical arrangements may be connected and harmonized to-
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gether, is to form a Theory of Systems of Rays, Finally, to do

this in such a manner as to make available the powers of the

modern mathesis, replacing figures by functions and diagrams

by formulae, is to construct an Algebraic Theory" of such

Systems, or an Application of Algebra to Optics,

"Towards constructing such an application it is natural, or

rather necessary, to employ the method introduced by Des-

cartes for the application of Algebra to Geometry. That great

and philosophical mathematician conceived the possibility, and

employed the plan, of representing or expressing algebraically

the position of any point in space by three co-ordinate numbers

which answer respectively how far the point is in three rectan-

gular directions (such as north, east, and west), from some fixed

point or origin selected or assumed for the purpose; the three

dimensions of space thus receiving their three algebraical

equivalents, their appropriate conceptions and sjTtibols in the

general science of progression [order]. A plane or curved surface

became thus algebraically defined by assigning as iU equation

the relation connecting the three co-ordinates of any point upon

it, and common to all those points: and a line, straight or

curv'ed, was expressed according to the same method, by the

assigning two such relations, correspondent to two surfaces of

w’hich the line might be regarded as the intersection. In this

manner it became possible to conduct general investigations

respecting surfaces and cur^’es, and to discover properties

common to all, through the medium of general investigations

respecting equations between three variable numbers: every

geometrical problem could be at least algebraically expressed,

if not at once resolved, and every improvement or discovery in

Algebra became susceptible of application or interpretation in

Geometrj^. The sciences of Space and Time (to adopt here a view

ofAlgebra which I have elsewhere ventured to propose) became

intimately intertwined and indissolubly connected with each

other. Henceforth it was almost impossible to improve either

science without impro\ing the other also. The problem of

drawing tangents to cur\"es led to the discovery of Fluxions or

Differentials: those of rectification and quadrature to the inver-

sion of Fluents or Integrals: the investigation of curvatures of
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surfaces required the Calculus of Partial Differentials: the

isoperimetrical problems resulted in the formation of the

Calculus of Variations. And reciprocally, all these great steps

in Algebraic Science had immediately their applications to

Geometry', and led to the discovery of new relations between

points or lines or surfaces. But even if the applications of the

method had not been so manifold and important, there would
still have been derivable a high intellectual pleasure from the

contemplation of it as a method.

‘The first important application of this algebraical method of

co-ordinates to the study of optical systems was made by
Plains, a French officer of engineers in Napoleon's army in

Egypt, and who has acquired celebrity in the history of Phy-
sical Optics as the discoverer of polarization of light by reflec-

tion. Malus presented to the Institute of France, in 1807, a

profound mathematical work which is of the kind above alluded

to, and is entitled Traite cTOptique. The method employed in

that treatise may be thus described:- The direction of a

straight ray of any final optical system being considered as

dependent on the position of some assigned point on the ray,

according to some law which characterizes the particular

sj'Stem and distinguishes it from others; this law may be
algebraically expressed by assigning three expressions for the
three co-ordinates of some other point of the ray, as functions
of the three co-ordinates of the point proposed. Malus accord-

introduces general symbols denoting three such functions

for at least three functions equivalent to these), and proceeds
to draw several important general conclusions, by very compli-
cated yet s\Tmnetric calculations; many of which conclusions,
along with many others, were also obtained afterwards by
myself, when, by a method nearly similar, without knowing
what Malus had done, I began my ovv'n attempt to apply
Algebra to Optics. But my researches soon conducted me to
substitute, fc?r this method of yiaJus, a very different, and (as I
conceive that I have proved) a much more appropriate one, for
the study of optical systems; by which, instead of employing
the three functions above mentioned, or at least their tzoo ratios,
it becomes sufficient to employ one function^ which I call
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characteristic or principal. And thus, whereas he made his de-

ductions by setting out with the tisco equations of a ray, I on the

other hand establish and employ the one equation of a system.

•The function which I have introduced for this purpose, and

made the basis of my method of deduction in mathematical

Optics, had, in another connexion, presented itself to former

writers as expressing the result of a very high and extensive

induction in that science. This known result is usually called the

laxD of least action ^ but sometimes also the principle of least time

[see chapter on Fermat], and includes all that has hitherto been

discovered respecting the rules which determine the forms and

positions of the lines along which light is propagated, and the

changes of direction of those lines produced by reflection or

refraction, ordinary or extraordinary [the latter as in a doubly

refracting crystal, say Iceland spar, in which a single ray is

split into two, both refracted, on entering the crystal]. A
certain quantity which in one physical theory is the action, and

in another the twie, expended by light in going from any first

to any second point, is found to be less than if the light had

gone in any other than its actual path, or at least to have what

is technically called its variation null, the extremities of the

path being unvaried. The mathematical novelty of my method

consists in considering this quantity as a function of the co-

ordinates of these extremities, which varies when they vary,

according to a law which I have called the law of varymg action;

and in reducing all researches respecting optical systems of rays to

the study of this single function: a reduction which presents

mathematical Optics under an entirely novel view, and one

analogous (as it appears to me) to the aspect under which

Descartes presented the application of Algebra to Geometry.’

Nothing need be added to this account of Hamilton's, except

possibly the remark that no science, no matter how ably ex-

poimded, is understood as readily as any novel, no matter how
badly written. The whole extract will repay a second reading.

In this great work on systems of rays Hamilton had huilded

better than even he knew. Almost exactly 100 years after the

above abstract was written the methods which Hamilton intro-

duced into optics were found to be just what was required in
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the wave mechanics associated with the modern quantum

theory and the theory of atomic structure. It may be recalled

that Newton had favoured an emission, or corpuscular, theory

of light, wliile Huygens and his successors up to almost our own

time sought to explain the phenomena of light wholly by means

of a wave theory'. Both points of view^ were united and, in a

purely mathematical sense, reconciled in the modern quantum

theory, w’hich came into being in 1925-6. In 1831?, w’hen he was

twenty-eight, Hamilton realized his ambition of extending the

principles which he had introduced into optics to the whole of

dynamics.

Hamilton's theory of rays, shortly after its publication when

its author was but twenty-seven, had one of the promptest and

most spectacular successes of any of the classics of mathe-

matics. The theory purported to deal with phenomena of the

actual physical universe as it is obseiv'ed in eveiy'day life and

in scientific laboratories. Unless any such mathematical theory

is capable of predictions which experiments later verify, it is no

better than a concise dictionary of the subject it systematizes,

and it is almost certain to be superseded shortly by a more

imaginative picture which does not reveal its whole meaning at

the first glance. Of the famous predictions which have certified

the value of truly mathematical theories in physical science, we

may recall three: the mathematical discovery by John Couch

Adams (1819-92) and Urhain-Jean-Joseph Levenier (1811-77)

of the planet Neptune, independently and almost simulta-

neously in 1845, from an analysis of the perturbations of the

planet Uranus according to the Newtonian theory of gravita-

tion; the mathematical prediction of wireless waves by James
Clerk Maxwell (1831-79) in 1864, as a consequence of his own
electromagnetic theorj’ of light; and finally, Einstein’s predic-

tion in 1915-10, from his theorj' of general relativity, of the

deflection of a ray of light in a gravitational field, first con-

firmed by obser\'ations of the solar eclipse on the historic

29 May 1919, and his prediction, also from his theory, that the

spectral lines in light issuing from a massive body would be

shifted by an amount, w^hich Einstein stated, toward the red

end of the spectnim - also confirmed. The last two of these
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instances - Maxwell's and Einstein's - are of a different order

from the first: in both, totally unlnioxjcn ay}d unforeseen pheno-

mena were predicted mathematically; that 1% these predictions

were qualitative. Both [Maxwell and Einstein amplified their

qualitative foresight by precise qmntitniive predictions which

precluded any charge of mere guessing when their prophecies

were finally verified experimentally.

Hamilton's prediction of what is called conical refraction in

optics was of this same qualitative plus quantitative order.

From his theorv’ of systems of rays he predicted mathematically

that a wholly imexpected phenomenon would be found in con-

nexion with the refraction of light in biaxial crystals. 'VMiile

polishing the Third Supplement to his memoir on rays he sur-

prised himself by a discovery which he thus describes

:

"The law of the reflection of light at ordinary mirrors appears

to have been known to Euclid; that of ordinaiy- refraction at a

surface of water, glass, or other uncrystallized medium, was

discovered at a much later date by Snellius; Huygens disco-

vered, and Malus confirmed, the law of extraordinary refraction

produced by uniaxal ciy^stals, such as Iceland spar; and finally,

the law of the extraordinary double refraction at the faces of

biaxal ciy^stals, such as topaz or arragonite, was found in our

own time by Fresnel. But even in these cases of extraordinary

or crystalline refraction, no more than tveo refracted rays had
ever been observed or even suspected to exist, if we except a

theory of Cauchy, that there might possibly be a third ray,

though probabl^' imperceptible to our senses. Professor Hamil-

ton, however, in investigating by his general method the conse-

quences of the law of Fresnel, was led to conclude that there

ought to be in certain cases, which he assigned, not merely two,

nor three, nor any finite number, but an infinite number, or a

cone of refracted rays within a biaxal crystal, corresponding to

and resulting from a single incident ray; and that in certain

other cases, a single ray witliin such a crystal should give rise

to an infinite number of emergent rays, arranged in a certain

other cone. He was led, therefore, to anticipate from theory

two new laws of light, to which he gave the names of Internal

and External Conical Refraction.^
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The prediction and its experimental verification by Hum-
phrey Lloyd evoked unbounded admiration foryoung Hamilton

from those who could appreciate what he had done. Airy, his

former rival for the professorship of astronomy, estimated

Hamilton's achievement thus: ’Perhaps the most remarkable

prediction that has ever been made is that lately made by

Professor Hamilton.' Hamilton himself considered this, like any

similar prediction, "a subordinate and secondary result’ com-

pared to the grand object which he had in view, "to introduce

harmony and unity into the contemplations and reasonings of

optics, regarded as a branch of pure science.’

According to some this spectacular success was the high-

water mark in Hamilton’s career; after the great work on optics

and dynamics his tide ebbed. Others, particularly members of

what has been styled the High Church of Quaternions, hold

that Hamilton’s greatest work was still to come - the creation

of what Hamilton himself considered his masterpiece and his

title to immortality, his theory of quaternions. Leading quater-

nions out of the indictment for the moment, we may simply

state that, from his twenty-seventh year till his death at sixty,

two disasters raised havoc with Hamilton’s scientific career,

marriage and alcohol. The second was partly, but not wholly, a

consequence of the unfortunate first.

After a second unhappy love affair, which ended with a
thoughtless remark that meant nothing but which the hyper-

sensitive suitor took to heart, Hamilton married his third fancy,

Helen Maria Bayiey, in the spring of 1833. He was then in his

twenty-eighth year. The bride was the daughter of a country
parson's widow. Helen was ‘of pleasing ladylike appearance,
and early made a favourable impression upon him [Hamilton]
by her truthful nature and by the religious principles which he
knew her to possess, although to these recommendations was
not added any striking beauty of face or force of intellect.’

Now, any fool can tell the truth, and if truthfulness is all a fool
has to recommend her, whoever commits matrimony with her
vrill get the short end of the indiscretion. In the summer of 1832
Miss Bayiey ’passed through a dangerous illness, , . . , and this
event doubtless drew iiis [the lovelorn Hamilton’s] thoughts
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especially toward her, in the form of anxiety for her recovery,

and, coming at a time [when he had just broken with the girl he

really wanted] when he felt obliged to suppress his former

passion, prepared the way for tenderer and warmer feelings.'

Hamilton in short was properly hooked by an ailing female who
was to become a semi-invalid for the rest of her life and who,
either through incompetence or ill-health, let her husband’s

slovenly ser\'ants run his house as they chose, which at least in

some quarters - especially his study - came to resemble a pig-

sty. Hamilton needed a sympathetic woman with backbone to

keep liim and his domestic affairs in some semblance of order;

instead he got a weakling.

Ten years after his marriage Hamilton tried to pull himselfup
short on the slippery trail he realized wdth a brutal shock he was
treading. As a young man, feted and toasted at dinners, he had
rather let himself go, especially as his great gifts for eloquence

and convi\dalit3’ were naturally enough heightened hy a drink

or two. After his marriage, irregular meals or no meals at all, and
his habit of working twelve or fourteen hours at a stretch, were
compensated for by taking nourishment from a bottle.

It is a moot question whether mathematical inventivetiess is

accelerated or retarded hy moderate indulgence in alcohol, and
until an exhaustive set of controlled experiments is carried out
to settle the matter, the doubt must remain a doubt, preeisety

as in am" other biological research. If, as some maintain, poetic

and mathematical inventiveness are akin, it is hy no means
obvious that reasonable alcoholic indulgence (if there is such a
thing) is destructive of mathematical inventiveness; in fact

numerous well-attested instances would seem to indicate the

contrarj". In the case of poets, of course, ‘wine and song' have
often gone together, and in at least one instance - Smnbume -

without the first the second dried up almost completel\". Mathe-
maticians have frequently remarked on the terrific strain

induced hy prolonged concentrations on a difficult^-, and some
have found the let-down occasioned a drink a decided relief.

But poor Hamilton quickly passed beyond this stage and be-

came careless, not onl}- in the untid}- privacy" of his studj^ but
also in the glaring publicity of a banquet hall. He got drunk at
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a scientific dinner. Realizing what had overtaken him, he

resolved never to touch alcohol again, and for two years he kept

his resolution. Then, during a scientihe meeting at the estate of

Lord Rosse (owner of the largest and most useless telescope

then in existence), his old rival. Airy, jeered at him for drinking

nothing but water. Hamilton gave in, and thereafter took ah he

wanted - which was more than enough. Still, even this handicap

could not put him out of the race, although without it he pro-

bably would have gone farther and have reached a greater

height than he did. However, he got high enough, and moral-

izing may be left to moralists.

Before considering what Hamilton regarded as his master-

piece, we may briefly summarize the principal honours which
came his way. At thirty he held an influential offlce in the
British Association for the Advancement of Science at its

Dublin meeting, and at the same time the Lord-Lieutenant bade
him to "Kneel down, Professor Hamilton', and then, having
dubbed him on both shoulders with the sword of State, to "Rise

up, Sir William Rowan Hamilton'. This was one of the few
occasions in his life on which Hamilton had nothing whatever
to say. At thirty-two he became President of the Royal Irish

Academy, and at thirty-eight was awarded a Civil List life

pension of £200 a year from the British Government, Sir

Robert Peel, Ireland’s reluctant friend, being then Premier.
Shortly before this Hamilton had made his capital invention —
quaternions.

An honour which pleased him more than any he had ever
received was the last, as he lay on his deathbed: he was elected
the first foreign member of the National Academy of Sciences
of the United States, which was founded during the Chil War.
'Ihis honour was in recognition of his work in quaternions,
principally , which for some unfathomable reason stirred
American mathematicians of the time (there were only one or
two in existence, Benjamin Peirce of Harvard being the chief)
more profoundly than had any other British mathematics since
Newton's Principia, The early popularity of quaternions in the
United States is somewhat of a mysten^ Possibly the turgid
eloquence of the Lectures on Quateryiioiis captivated the tastem
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of a young and vigorous nation which had yet to outgrow its

morbid addiction to senatorial oratory and Fourth of July

verbal fireworks.

Quaternions has too long a history for the whole story to be

told here. Even Gauss with his anticipation of ISIT was not the

fii'st in the field: Euler preceded him vrith. an isolated result

vrhieh is most simply interpreted in terms of quaternions. The
origin of quaternions may go back even farther than this, for

Augustus de Morgan once half-jokingly offered to trace their

histoiy’ for Hamilton from the ancient Hindus to Queen Vic-

toria. However, we need glance here only at the lion's share in

the invention and consider briefly what inspired Hamilton.

The British school of algebraists, as v.'ill be seen in the chapter

on Boole, put common algebra on its oto feet during the first

half of the nineteenth century. Anticipating the currently

accepted procedure in developing any branch of mathematics

carefully and rigorously they founded algebra postulationally.

Before this, the various kinds of 'numbers' - fractions, nega-

tives, irrationals - which enter mathematics when it is assumed

that all algebraic equations have roots, had been allowed to

function on precisely the same footing as the common positive

integers which were so staled by custom that all mathemati-

cians believed them to be ‘natural' and in some vague sense

completely understood - they are not, even to-day, as will be
seen when the wDrk of Georg Cantor is discussed. This naive

faith in the self-consistency of a system founded on the blind,

formal juggling of mathematical symbols may have been
sublime but it was also slightly idiotic. The climax of this

credulity was reached in the notorious principle of permanence

of form, which stated in effect that a set of rules which ^^ield

consistent resTiits for one kind of numbers - say the positive

integers - wiH continue to yield consistency when applied to any
other kind - say the imaginaries - even when no interpretation

of the results is e\ident. It does not seem surprising that this

faith in the integrity of meaningless symbols frequently led to

absurdity.

The British school changed all this, although they were
unable to take the final step andpi’orc that their postulates for
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common algebra will never lead to a contradiction. That step

taken only in our own generation by the German workers

in the foundations of mathematics. In this connexion it must be

kept in mind that algebra deals only with finite processes ; when

infinite processes enter, as for example in summing an infinite

series, we are thrust out of algebra into another domain. This

is emphubized because the usual elementary text labelled

^41geb^a’ contains a great deal - infinite geometric progressions,

for instance - that is not algebra in the modern meaning of the

word.

The nature of what Hamilton did in his creation of quater-

nions will show up more clearly against the background of a set

of postulates (taken from L. E. Dickson's Algebras and Their

Ariihmeiics, Chicago, 1923) for common algebra or, as it is

technically called, afield (English writers sometimes use corpus

as the equivalent of the German Korper or French corps).

‘A field F is a system consisting of a set S of elements a, 5,

c, . . . and two operations, called addition and multiplication,

which may be performed upon any two (equal or distinct)

elements a and h of S. taken in that order, to produce uniquely

determined elements « S b and a O boiS. such that postulates

I-V are saiisfied. For simplicity we shall write a -f- b for a © b,

and ah for a C b, and call them the sian and product, respec-

tively, of a and b. ^Moreover, elements of S will be called

elements of F.

T. If a and b are any two elements of F, a -f b and ab
are uniquely determined elements of F, and

b -r a = a >f b, b« = ab.

TI. If are any three elements of F,

ia^h) — c^a-rih-^c), {ah)C = a{bc), a(b -{- c) = ab + ac,

TII. There exist in F two distinct elements, denoted by 0, 1,

such that if // is any element of F, « -f- 0 = a, al = a (w'hence
0 -r fl = a, la — a, by I).

I\ . hatever be the element a of F, there exists in F an
element jc such that a — == 0 (whence a; -f a = 0 by I).

‘V. Whatever be the element a (distinct from 0) of F, there
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exists in jP an element y such that ay = 1 (whence ya = 1, by

I)-’

From these simple postulates the whole of common algebra

follows. A word or two about some of the statements may be

helpful to those who have not seen algebra for years. In II, the

statement {a ~ h) -r c = a (b c), called the associative latv

of addition, says that if a and h are added, and to this sum is

added c, the result is the same as if a and the sum of b and c

are added. Similarly with respect to multiplication, for the

second statement in II. The third statement in II is called the

distributive lav:. In III a 'zero' and ‘unity’ are postulated; in IV,

the postulated x gives the negative of a; and the first paren-

thetical remark in V forbids 'dmsion by zero'. The demands in

Postulate I are called the commutative laws of addition and

multiplication respectively.

Such a set of postulates may be regarded as a distillation of

experience. Centuries of working with numbers and getting

useful results according to the rules of arithmetic - empirically

arrived at - suggested most of the rules embodied in these

precise postulates, but once the suggestions of experience are

understood, the interpretation (here common arithmetic) fur-

nished by experience is deliberately suppressed or forgotten,

and the system defined by the postulates is developed abstractly^

on its owm merits, by common logic plus mathematical tact.

Notice in particular IV, wliich postulates the existence of

negatives. We do not attempt to deduce the existence of nega-

tives from the behaviour of positives. 'VMien negative numbers

first appeared in experience, as in debits instead of credits, they,

as numbers, were held in the same abhorrence as ‘uimaturar

monstrosities as were later the ‘imaginary’ numbers

V — 2, etc., arising from the formal solution of equations such

as -r 1 = 0, cC- 4- 2 = 0, etc. If the reader will glance back

at what Gauss did for complex numbers he w’Hl appreciate more
fully the complete simplicity of the foUowdng partial statement

of Hamilton's original way of stripping ‘imaginaries' of their

silly, purely imaginary mystery. This simple tiling was one of

the steps which led Hamilton to his quaternions, although

strictly it has nothing to do writh them. It is the method and the
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point of t'ieu: behind this ingenious recasting of the algebra of

complex numbers TV'hich are of importance for the sequel.

If as usual i denotes - 1, a ‘complex number is a number

of the type a -f hi, where a,b are ‘real numbers’ or, if preferred,

and more generally, elements of the field F defined by the above

postulates. Instead of regarding a 4- bi as one ‘number’,

Hamilton conceived it as an ordered couple of ‘numbers’, and he

designated this couple by T\Titing it {afi). He then proceeded to

impose definitions of sum and product on these couples, as

suggested by the formal rules of combination sublimated from

the experience of algebraists in manipulating complex numbers

as if the laws of common algebra did in fact hold for them.

One advantage of this new way of approaching complex

numbers was this: the definitions for sum and product of

couples were seen to be instances of the general, abstract

definitions of sum and product as in a field. Hence, if the con-

sistency of the system defined by the postulates for a field is

'proved, the like follows, without further proof, for complex

numbers and the usual rules by which they are combined. It

will be sufficient to state the definitions of sum and product in

Hamilton's theor\’ of complex numbers considered as couples

{aJi} (c,c?), etc.

The sum of ia,h) and (€,d) is (a -i- b, c -j- d); their product is

(ac — hd, ad -r be). In the last, the minus sign is as in a field;

namely, the element x postulated in IV is denoted by — a. To
the 0, 1 of a field correspond here the couples (0,0), (1,0). With

these definitions it is easily verified that Hamilton’s couples

satisfy aU the stated postulates for a field. But they also accord

with theformal rules for manipulating complex numbers. Thus,

to (clI), (c.d) correspond respectively a -p bi, c H- di, and the

formal \suni’ of these two is (« -f c) -f i{b -f d), to which corre-

sponds the couple (a -h c, 6 -f d). Again, formal multiplication

of a -f hi, c -r id gives (ac — fed) -f i{ad -f- he), to which cor-

responds the couple (ac — bd, ad -f be). If this sort of thing is

new to any reader, it will repay a second inspeetion, as it is an
example of the way in which modem mathematics eliminates

mystery^ So long as there is a shred of my'stery attached to any
eoneept that conc*ept is not mathematical.
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Ha^ing disposed of complex numbers by couples^ Hamilton

sought to extend his device to ordered triples and quadruples.

Without some idea of what is sought to be accomplished such

an undertaking is of course so vague as to be meaningless.

Hamilton's object was to invent an algebra which would do for

rotations in space of three dimensions what complex numbers,

or his couples, do for rotations in space of fivo dimensions, both

spaces being Euclidean as in elementarj^ geometry. Now, a

complex number a -f- hi can be thought of as representing a

vector^ that is. a line segment having both length and direction,

as is evident from the diagram, in which the directed segment

(indicated by the arrow) represents the vector OP.

But on attempting to sj^mbolize the behaviour of vectors in

three-dimensional space so as to presen’^e those properties of

vectors which are of use in physics, particularly in the combina-

tion of rotations, Hamilton was held up for years by an unfore-

seen diiBculty whose very nature he for long did not even

suspect. We may glance in passing at one of the clues he

followed. That this led him anywhere ” as he insisted it did - is

all the more remarkable as it is now almost universally regarded

as an absurdity, or at best a metaphysical speculation without

foundation in history or in mathematical experience.

Objecting to the purely abstract, postulational formulation
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of algebra advocated by his British contemporaries, Hamilton

sought to found algebra on something *more reaF, and for this

strictly meaningless enterprise he drew on his knowledge of

Kant’s mistaken notions - exploded by the creation of non-

Euclidean geometrs^ - of space as “a pure form of sensuous

intuition'. Indeed Hamilton, who seems to have been unac-

quainted with non-Euelidean geometiy^, followed Kant in

belie\ing that ‘Time and space are two sources of knowledge

from wiiich various a priori synthetical cognitions can be

derived. Of this, pure mathematics gives a splendid example in

the case of our cognition of space and its various relations. As

they are both pure forms of sensuous intuition, they render

synthetic propositions a priori possible.' Of course any not

utterly illiterate mathematician to-day knows that Kant was
mistaken in this conception of mathematics, but in the lS40‘s,

when Hamilton was on his way to quaternions, the Kantian

philosophy of mathematics still made sense to those - and they

were nearly all - who had never heard of Lobatchew’skj'. By
what looks like a bad mathematical pun, Hamilton applied the

Kantian doctrine to algebra and drew the remarkable conclu-

sion that, since geometr\’ is the science of space, and since time-

and space are "pure sensuous forms of intuition’, therefore the

rest of mathematics must belong to time, and he wasted much
of his OAvn time in elaborating the bizarre doctrine that algebra

is the scicjice of pure time,

Tliis queer crotchet has attracted many philosophers, and
quite recently it has been exhumed and solemnly dissected bv
owlish metaphysicians seeking the philosopher’s stone in the
gall bladder of mathematics. Just because ‘algebra as the
science of pure time’ is of no earthly mathematical significance,

it will continue to he discussed with animation till time itself

ends. The opinion of a great mathematician on the ‘pure time’
aspect of algebra may be of interest. ‘I cannot myself recognize
the connexion of algebra with the notion of time,’ Cayley con-
fessed: granting that the notion of continuous progression
presents itself and is of importance, I do not see that it is in
any wise the fundamental notion of the science.’

Hamilton’s difficulties in trying to construct an algebra of
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vectors and rotations for three-dimensional space were rooted

in his subconscious conviction that the most important laws of

common algebra must persist in the algebra he was seeking.

How were vectors in three-dimensional space to be multiplied

together?

To sense the difficulty of the problem it is essential to bear in

mind (see Chapter on Gauss) that ordinary complex numbeTS

(2 = V — 1) had been given a simple interpretation in

terms of rotations in a plane, and further that complex numbers

obey all the rules of common algebra, in particular the commuta-

tive law of multiplication: if ..4, B are any complex numbers, then

A A B — B A A, whether A, B are interpreted algebraically,

or in terms of rotations in a plane. It was but human then to

anticipate that the same commutative law would hold for the

generalizations of complex numbers which represent rotations in

space of three dimensions.

HamOton's great discovery - or invention - was an algebra,

one of the ’natural’ algebras of rotations in space of three

dimensions, in which the commutative law of multiplication

does not hold. In this Hamiltonian algebra of quaternions (as

he called his invention), a multiplication appears in which

A ;< B is not equal to B X ^ but to minus B x A, that is,

A X B = - B X A.

That a consistent, practically useful system of algebra could

be constructed in defiance of the commutative law’ of multipli-

cation was a discovery of the first order, comparable, perhaps,

to the conception of non-Euclidean geometry. Hamilton him-

self was so impressed by the magnitude of what suddenly

dawned on his mind (after fifteen years of fruitless thought) one

day (16 October 1843) when he was out walking with his wife

that he carved the fundamental formulae of the new algebra

in the ^tone of the bridge on which he found himself at the

moment. His great invention showed algebraists the way to

other algebras until to-day, foUo^ving Hamilton's lead, mathe-

maticians manufacture algebras practically at w’iH by negating

one or more of the postulates. for a field and developing tlit

consequences. Some of these ‘'algebras’ are extremely useful;

the general theories embracing swarms of them include HamH-
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ton's great invention as a mere detail, although a highly

important one.

In line with Hamilton's quaternions the numerous brands of

sector analysis favoured by physicists of the past two genera-

tions sprang into being. To-day all of these, including quater-

nions, so far as physical applications are concerned, are being

swept aside by the incomparably simpler and more general

tensor analysis which came into vogue with general relati\ity in

1915. Something vill be said about tills later.

In the meantime it is sufheient to remark that Hamilton's

deepest tragedy was neither alcohol nor marriage but Ms

obstinate belief that quaternions held the key to the mathe-

matics of the physical universe. History has shown that

Hamilton tragically deceived himself when he insisted "... I

still must assert that this discovery appears to me to be as

important for the middle of the nineteenth centurj' as the dis-

covery of fluxions [the calculus] was for the close of the seven-

teenth.' Never was a great mathematician so hopelessly wrong.

The last twenty-two years of Hamilton's life were devoted

almost exclusively to the elaboration of quaternions, including

their application to dynamics, astronomy, and the wave theory

of light, and his voluminous correspondence. The style of the

overdeveloped Ekments ofQiiaternions, published the year after

Hamilton's death, shows plainly the effects of the author’s

mode of life. After his death from gout on 2 September 1865 in

the sixty-first year of his age, it was found that Hamilton had

left behind a mass of papers in indescribable confusion and

about sixty huge manuscript books full of mathematics. An
adequate edition of his works is now in progress. The state of

his papers testified to the domestic difficulties under which the

last third of his life had been lived: innumerable dinner plates

with the remains of desiccated, un^dolated chops were found

buried in the mountainous piles of papers, and dishes enough
to supply a large household were dug out from the confusion.

During his last period Hamilton lived as a recluse, ignoring the

meals dhoved at him as he worked, obsessed by the dream that

the last tremendous effort of his magnificent genius would
unmortalize both himself and his beloved Ireland, and stand
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iOreTer unshaken as the greatest mathematical contribution to

science since the Prmcipia of Ne^yton.

His earlj^ work, on which his imperishable glory rests, he

came to regard as a thing of but little moment in the shadow of

what he believed was his masterpiece. To the end he was
humble and devout, and wholly without anxiety for his scien-

tific reputation. T have very long admired Ptolemy’s descrip-

tion of his great astronomical master, Hipparchus, as di/7/p

SlXottovos Kal (l}LAaX7]drj£; a labour-loving and truth-loving

man. Be such my epitaph.’



CHAPTER TWENTY

GE^’IUS AND STUPIDITY

Galois

Abel was done to death by poverty, Galois by stupidity. In all

the histon- of science there is no completer example of the

triumph of crass stupidity over untamable genius than is

afforded by the all too brief life of fivariste Galois. The record

of his misfortunes might well stand as a sinister monument to

all self-assured pedagogues, unscrupulous politicians, and con-

ceited academicians. Galois was no 'ineffectual angeP, but even

his magnificent powers were shattered before the massed

stupidity aligned against him, and he beat his life out fighting

one unconquerable fool after another.

The first eleven years of Galois* life were happy. His parents

lived in the little \illage of Bourg-la-Reine, just outside Paris,

where fivariste was horn on 25 October 1811. Nicolas-Gabriel

Galois, the father of fivariste. was a relic of the eighteenth

century, cultivated, intellectual, saturated with philosophy, a

passionate hater of royalty and an ardent lover of liberty.

During the Hundred Days after Napoleon’s escape from Elba,

Galois was elected mayor of the village. After Waterloo he
retained his office and served faithfully under the King, hacking
the villagers against the priest and delighting social gatherings

with the old-fashioned rhymes which he composed himself.

These harmless actmties were later to prove the amiable man*s
undoing. From his father, fivariste acquired the trick of

rhyming and a hatred of tyranny and baseness.

Unto the age of twelve Galois had no teacher hut his mother,
Adelaide-Marie Demante. Several of the traits of Galois’

character were inherited from his mother, who came from a
long line of distinguished jurists. Her father appears to have
been somewhat of a Tartar. He gave his daughter a thorough

398



GENIUS AND STUPIDITY

classical and religious education, which she in turn passed on

to her eldest son* not as she had received it, but fused into a

virile stoicism in her o'svn independent mind. She had not

rejected Christianity, nor had she accepted it without question;

she had merely contrasted its teachings mth those of Seneca

and Cicero, reducing all to their basic morality. Her friends

remembered her as a woman of strong character with- a mind

of her own, generous, wdth a marked vein of originality, quiz-

zical, and, at times, inclined to be paradoxical. She died in 1872

at the age of eighty-four. To the last she retained the full vigour

of her mind. She, like her husband, hated tyranny.

There is no record of mathematical talent on either side of

Galois’’ family. His own mathematical genius came on him like

an explosion, probably at early adolescence. As a child he was
affectionate and rather serious, although he entered readily

enough into the gaiety of the recurrent celebrations in his

father s honour, even composing rhymes and dialogues to

entertain the guests. All this changed under the first stings of

petty persecution and stupid misunderstanding, not by his

parents, but by his teachers.

In 1823, at the age of twelve, Galois entered the lycee of

Louis-le-Grand in Paris. It was his first school. The place was a

dismal horror. Barred and grilled, and dominated by a provisor

who was more of a political jailer than a teacher, the place

looked like a prison, and it was. The France of 1823 still remem-
bered the Revolution, It was a time of plots and counterplots,

of riots and rumours of revolution. All this was echoed in the

school. Suspecting the provisor of scheming to bring back the

Jesuits, the students struck, refusing to chant in chapel. With-

out even notif;jTng their parents the pro\isor expelled those

whom he thought most guilty. They found themselves in the

street. Galois was not among them, but it would have been

better for him if he had been.

Till now tyranny had been a mere word to the boy of twelve.

Now he saw it in action, and the experience warped one side of

his character for life. He was shocked into unappeasable rage.

His studies, owing to his mother's excellent instruction in the

classics, went very well and he won prizes. But he had also
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gained (something more lasting than any prize, the stubborn

con\iction. right or v^Tong, that neither fear nor the utmost

severity of discipline can extinguish the sense of justice and fair

dealing in young minds experiencing their first unselfish devo-

tion. This his fellow students had taught him by their courage.

Galcis never forgot their example. He was too young not to be

embittered.

The following year marked another crisis in the young boy's

life. Docile interest in literature and the classics gave way to

boredom; Ins mathematical genius was already stirring. His

teachers ad\dsed that he be demoted, variste’s father objected,

and the boy continued witli his interminable exercises in

rhetoric. Latin, and Greek. His w’ork was reported as mediocre,

his conduct ‘dissipated', and the teachers had their way.

Galois was demoted. He was forced to lick up the stale leavings

which his genius had rejected. Bored and disgusted he gave his

work perfunctory attention and passed it without effort or

interest. Mathematics was taught more or less as an aside to the

serious business of digesting the classics, and the pupils of

various grades and assorted ages took the elementary mathe-

matical course at the convenience of their other studies.

It was during this year of acute boredom that Galois began

mathematics in the regular school course. The splendid geo-

metry of Legendre came his way. It is said that two years was

the usual time required by even the better mathematicians

among the boys to master Legendre. Galois read the geometry

from cover to cover as easily as other hoys read a pirate yarn.

Tlie book aroused bis enthusiasm; it was no textbook written

by a hack, but a work of art composed by a creative mathe-

matician. A single reading sufficed to reveal the whole structure

of elemcntarj^ geometry in crystal clarity to the fascinated boy.

He had mastered it.

His reaction to algebra is illuminating. It disgusted him, and

for a very good reason when we consider what sort of mind

Galois had. Here was no master like Legendre to inspire him.

The text in algebra was a school book and nothing more.

Galois contemptuously tossed it aside. It lacked, he said, the

creator’s touch that only a creative mathematician can give.
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Ha'STng made the acquaintance of one great mathematician

through his work, Galois took matters into his own hands.

Ignoring the meticulous pettifogging of his teacher, Galois went

directly for his algebra to the greatest master of the age,

Lagrange. Later he read Abel. The boy of fourteen or fifteen

absorbed masterpieces of algebraical analysis addressed to

mature professional mathematicians - the memoirs on the

numerical solution of equations, the theory of anal3i:icai func-

tions, and the calculus of functions. His class work in mathe-

matics was mediocre: the traditional course was trivial to a

mathematical genius and not necessary for the mastering of real

mathematics.

Galois’ peculiar gift of being able to earn,* on the most diffi-

cult mathematical investigations almost entirely in his head

helped him with neither teachers nor examiners. Their insist-

ence upon details which to him were ob\*ious or tri\dal exas-

perated him beyond endurance, and he frequently lost his

temper. Nevertheless he earned off the prize in the general

examination. To the amazement of teachers and students alike

Galois had taken his own kingdom by assault while their backs

were turned.

With this first realization of his tremendous power, Galois’

character underwent a profound change. Knowing his kinship

to the great masters of algebraical analysis he felt an immense

pride and longed to rush on to the front rank to match his

strength with theirs. His family - even his unconventional

mother - found him strange. At school he seems to have

inspired a curious mixture of fear and anger in the minds of his

teachers and fellow students. His teachers were good men and

patient, but they w*ere stupid, and to Galois stupidity was the

unpardonable sin. At the beginning of the year they had

reported him as “very gentle, full of innocence and good quali-

ties, but And they went on to say that "there is something

strange about him.’ No doubt there was. The boy had unusual

brains. A little later they admit that he is not ‘wicked’, but

merely ‘original and queer', ‘argumentative’, and they complain

that he delights to tease his comrades. All very reprehensible,

no doubt, but they might have used their eyes. The boy had
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discovered mathematics and he was already being driven by

his daemon. By the end of the year of awakening we learn that

'his queemess has alienated him from all his companions’, and

his teachers obser^^e 'something secret in his character’. Worse,

they accuse him of ^affecting ambition and originality’. But it

is admitted by some that Galois is good in mathematics. His

rhetoric teachers indulge in a little classical sarcasm; "His

cleverness is now a legend that we cannot credit.’ They rail that

there is only slovenliness and eccentricity in his assigned tasks-

when he deigns to pay any attention to them - and that he goes

out of his way to wear\" his teachers by incessant ‘dissipation’.

The last does not refer to vice, because Galois had no vicious-

ness in him. It is merely a strong w'ord to describe the heinous

inability of a mathematical genius of the first rank to squander

his intellect on the futilities of rhetoric as expounded by
pedants.

One man, to the everlasting credit of his pedagogical insight,

declared that Galois was as able in literary studies as he was in

mathematics. Galois appears to have been touched by this

man's kindness. He promised to give rhetoric a chance. But his

mathematical de\il was now fully aroused and raging to get

out, and poor Galois fell from grace. In a short time the dissen-

ing teacher joined the majority and made the vote unanimous.

Galois, he sadly admitted, was beyond salvation, ‘conceited

with an insufferable affectation of originality’. But the peda-

gogue redeemed himself by one excellent, exasperated sugges-

tion. Had it been followed, Galois might have lived to eighty.

'The mathematical madness dominates this boy. I think his

parents had better let him take only mathematics. He is wast-

ing his time here, and all he does is to torment his teachers and
get into trouble.'

At the age of sixteen Galois made a curious mistake. Una-
ware that Abel at the beginning of his career had convinced
himself that he had done the impossible and had solved the
general equation of the fifth degree, Galois repeated the error.

For a time - a verj- short time, however - he believed that he
had done what cannot be done. This is merely one of several

extraordinary similarities in the careers of Abel and Galois.

402



GENIUS AND STUPIDITY

\Miile Galois at the age of sixteen ’vvas already well started

on his career of fundamental discovery, his mathematical

teacher - Vernier - kept fussing over him like a hen that has

hatched an eaglet and does not know how to keep the unruly

creature's feet on the good dirt of the barnyard. Vernier

implored Galois to work systematically. The advice was ignored

and Galois, without preparation, took the competitive examina-

tions for entrance to the ficole Polytechnique. This great

school, the mother of French mathematicians, founded during

the French Revolution (some say by Monge), to give chdl and
military engineers the best scientific and mathematical educa-

tion available anywhere in the world, made a double appeal to

the ambitious Galois. At the Pohi:echnique Ms mathematical

talent Y^ould be recognized and encouraged to the utmost. And
his cra\ing for libertj" and freedom of utterance would be grati-

fied: for were not the virile, audacious young Poljiiechnicians,

among them the future leaders of the army, always a thorn in

the side of reactionary schemers who would undo the glorious

work of the Revolution and bring back the corrupt priesthood

and the divine right of kings? The fearless Polyteehnieians, at

least in Galois' boj^ish eyes, were no race of puling rhetoricians

like the browbeaten nonentities at Louis-le-Grand, but a conse-

crated band of young patriots. Events were presently to prove

liim at least partly right in his estimate.

Galois failed in the examinations. He was not alone in be-

lieving his failure the result of a stupid injustice. The comrades

he had teased unmercifully were stunned. They believed that

Galois had mathematical genius of the highest order and they

suspected his examiners of incompetence in their office. Nearly

a quarter of a century later Terquem, editor of the Nouvelles

Annales de Mathematiques, the mathematical journal devoted

to the interests of candidates for the Polytechnique and Nor-

male schools, reminded Ms readers that the controversy was
not yet dead. Commenting on the failure of Galois and on the

inscrutable decrees of the examiners in another instance. Ter-

quem remarks, candidate of superior intelligence is lost with

an examiner of inferior intelligence. Hie ego barbarus sum quia

non intelUgor illis [Because they don't understand me, I am a
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barbaxian.] . . . Examinations are mysteries before which I bow.

Like the mysteries of theolog>', the reason must admit them

with humility, without seeking to understand them.’ As for

Galois, the failure was almost the finishing touch. It drove him

in upon himself and embittered him for life.

In 1828 Galois was seventeen. It was his great year. For the

first time he met a man who had the capacity to understand

his genius, Louis-Paul-Emile Richard (1795-1849), teacher of

advanced mathematics (mathemaiiques speciales) at Louis-le-

Grand. Richard was no conventional pedagogue, but a man of

talent who followed the advanced lectures on geometry at the

Sorbonne in his spare time and kept himself abreast of the

progress of Ihing mathematicians to pass it on to his pupils.

Timid and unambitious on his own account, he threw all his

talent on the side of his pupils. The man who would not go a

step out of his way to advance his own interests coimted no

sacrifice too great where the future of one of his students was

at stake. In his zeal to advance mathematics through the work
of abler men he forgot himself completely, although his scien-

tific friends urged him to wTite, and to his inspired teaching

more than one outstanding French mathematician of the nine-

teenth century has paid grateful tribute: Leverrier, co-disco-

verer with Adams by pure mathematical analysis of the planet

Neptune; Serret, a geometer of repute and author of a classic

on higher algebra in which he gave the first systematic exposi-

tion of Galois’ theory of equations; Hermite, master algebraist

and arithmetician of the first rank; and last, Galois.

Richard recognized instantly what had fallen into his hands -

^the Abel of France’. The original solutions to difficult problems

which Galois handed in were proudly explained to the class,

with just praise for the young author, and Richard shouted
from the housetops that this extraordinary pupil should be
admitted to the Polj’technique without examination. He gave
Galois the first prize and wrote in his term report. This pupil

has a marked superiority above ail his fellow students; he works
only at the most ad\-anced parts of mathematics,’ All of which
was the literal truth. Galois at seventeen was making disco-

veries of epochal significance in the theory of equations, dis-
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coveries whose consequences are not yet exhausted after more
than a centu^>^ On 1 March 1829, Galois published liis first

paper, on continued fractions. This contains no hint of the

Trreat things he had done, but it ser%’ed to announce him to his

fellow students as no mere scholar but an inventive mathe-
matician.

The leading French mathematician of the time was Cauchy.

In fertility of invention Cauchy has been equalled by but few:

and as we have seen, the mass of his collected works is exceeded
in bulk only by the outputs of Euler and Cayley,* the most
prolific mathematicians of histor\\ Mlienever the Academy of
Sciences wished an authoritative opinion ori the merits of a
mathematical work submitted for its consideration it called

upon Cauchy. As a rule he was a prompt and just referee. But
occasionally he lapsed. Unfortunately the occasions of his lapses

were the most important of all. To Cauchy’s carelessness

mathematics is indebted for tw^o of the major disasters in its

historj" ; the neglect of Galois and the shabby treatment of Abel.

For the latter Cauchy w’as only partly to blame, but for

the inexcusable laxity in Galois’ case Cauchy alone is respons-

ible.

Galois had saved the fundamental discoveries he had made
up to the age of seventeen for a memoir to be submitted to the
Academy. Cauchy promised to present this, but he forgot. To
put the finishing touch to his ineptitude he lost the author’s

abstract. That was the last Galois ever heard of Cauchy’s
generous promise. This was only the first of a series of similar

disasters which fanned the thw’^arted boy's suUen contempt of
academies and academicians into a fierce hate against the whole
of the stupid society’' in which he w^as condemned to live.

In spite of his demonstrated genius the harassed boy was not
even now left to himself at school. The authorities gave him no
peace to har\^est the rich field of his discoveries, but pestered
him to distraction with petty tasks and goaded him to open
revolt by their everlasting preachings and punishments. Still

* That is, so far as actually published work is concerned up to 1930.

Euler undoubtedly will surpass Cayley in bulk when the full edition

of his works is finally printed.
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they could find nothing in him but conceit and an iron deter-

mination to be a mathematician. He already was one, but they

did not know it.

Two further disasters in his eighteenth year put the last"

touches to Galois’ character. He presented himself a second

time for the entrance examinations at the Polytechnique. Men

who were not worthy’ to sharpen his pencils sat in judgement on

him. The result was what might have been anticipated. Galois

failed. It was his last chance: the doors of the Polytechnique

were closed forever against iiim.

That examination has become a legend. Galois' habit of

working almost entirely’ in his head put him at a serious disad-

vantage before a blackboard. Chalk and erasers embarrassed

him - till he found a proper use for one of them. During the oral

part of the examination one ofthe inquisitors ventured to argue

-

a mathematical difficulty with Galois. The man was both

wrong and obstinate. Seeing all his hopes and his whole life as a

mathematician and polyi:echnie champion of democratic liberty

slipping away’ from him, Galois lost all patience. He knew that

he had officially failed. In a fit of rage and despair he hurled the

eraser at his tormentor’s face. It was a hit.

The final touch was the tragic death of Galois' father. As the

may’or of Bourg-la-Reine the elder Galois was a target for the

clerical intrigues ofthe times, especially as he had alway’s cham-

pioned the villagers against the priest. After the stormy elec-

tions of 1827 a resourceful young priest organized a scurrilous

campaign against the may’or. Capitalizing the mayor's well-

known gift for versify’ing, the ingenious priest composed a set

of filthy’ and stupid verses against a member of the may’or's

family, signed them with Mayor Galois’ name, and circulated

them freely among the citizens. The thoroughly’ decent mayor
developed a persecution mania. During his wife's absence one

day’ he slipped off to Paris and, in an apartment but a stone's

throw from the school where his son sat at his studies, com-
mitted suicide. At the funeral serious disorder broke out. Stones
were hurled by’ the enraged citizens; a priest was gashed on the

forehead. Galois saw his father's coffin lowered into the grave
in the midst of an unseemly' riot. Thereafter, suspecting every-
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where the injustice which he hated, he could see no good in

anything.

After his second failure at the Polytechnique, Galois returned

to school to prepare for a teaching career. The school now had a
new director, a time-serving, somewhat cowardly stool-pigeon

for the royalists and clerics. This man’s shilly-shally tempor-

izing in the political upheaval which was presently to shake

France to its foundations had a tragic influence on Galois’ last

years.

Still persecuted and maliciously misunderstood by his pre-

ceptors, Galois prepared himself for the final examinations.

The comments of his examiners are interesting. In mathematics

and physics he got ‘very good’. The final oral examination drew

the following comments: ‘This pupil is sometimes obscure in

expressing his ideas, but he is intelligent and shows a remark-

able spirit of research. He has communicated to me some new
results in applied analysis.’ In literature: ‘This is the only

student who has answered me poorly; he knows absolutely

nothing. I was told that this student has an extraordinary

capacity for mathematics. This astonishes me greatly; for, after

his examination, I believed him to have but little intelligence.

He succeeded in hiding such as he had from me. If this pupil is

really what he has seemed to me to be, I seriously doubt

whether he will ever make a good teacher.’ To which Galois,

remembering some of his own good teachers, might have

replied, ‘God forbid.’

In February 1830, at the age of nineteen, Galois was defi-

nitely admitted to university standing. Again his sure know-

ledge of his own transcendent ability was reflected in a wither-

ing contempt for his plodding teachers and he continued to

work in solitude on his own ideas. During this year he composed

three papers in which he broke new ground. These papers con-

tain some of his great work on the theory of algebraic equations.

It was far in advance of anything that had been done, and

Galois had hopefully submitted it all (with further results) in a

memoir to the Academy of Sciences, in competition for the

Grand Prize in Mathematics, This prize was stiU the blue ribbon

m mathematical research; only the foremost mathematicians of
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the day could sensibly compete. Experts agree that Galois’

memoir Tvas more than worthy of the prize. It was work of the

highest originality. As Galois said with perfect justice, ‘I have

carried out researches which will halt many savants in theirs.’

The manuscript reached the Secretary safely. The Secretary

took it home with him for examination, but died before he had

time to look at it. When his papers were searched after his death

no trace of the manuscript was found, and that was the last

Galois ever heard of it. He can scarcely be blamed for ascribing

his misfortunes to something less uncertain than blind chance.

After Cauchy’s lapse a repetition of the same sort of thing

looked too providential to be a mere accident. ‘Genius’, he said,

Ts condemned by a malicious social organization to an eternal

denial of justice in favour of fawning mediocrity,’ His hatred

grew, and he flung himself into politics on the side of republi-

canism, then a forbidden radicalism.

The first shots of the revolution of 1830 filled Galois with joy.

He tried to lead his fellow students into the fray, but they hung

back, and the temporizing director put them on their honour

not to quit the school. Galois refused to pledge his word, and

the director begged him to stay in till the following day. In his

speech the director displayed a singular lack of tact and a total

absence of common sense. Enraged, Galois tried to escape

during the night, but the wall was too high for him. Thereafter,

all through *the glorious three days’ while the heroic young

Polyteclmicians were out in the streets making history, the

director prudently kept his cjharges under lock and key.

Whichever way the cat should jump the director was prepared

to jump with it. The revolt successfully accomplished, the

astute director very generously placed his pupils at the disposal

of the temporary government. This put the finishing touch to

Galois’ political creed. During the vacation he shocked his

family and boyhood friends with his fierce championship of the

rights of the masses.

The last months of 1830 were as turbulent as is usual after a

tJaorough political stir-up. The dregs sank to the bottom, the

scum rose to the top, and suspended between the two the
moderate element of the population hung in indecision. Galois,
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back at college, contrasted the time-serving vacillations of the

director and the wishy-washy loyalty of the students with their

exact opposites at the Polytechnique. Unable to endure the

humiliation of inaction longer he wrote a blistering letter to the

Gazette des J^coles in which he let both students and director

have what he thought was their due. The students could have

saved him. But they lacked backbone, and Galois was expelled.

Incensed, Galois wrote a second letter to the Gazette, addressed

to the students. T ask nothing ofyou for myself’, he wrote: ‘but

speak out for your honour and according to your conscience.’

The letter was unanswered, for the apparent reason that

those to whom Galois appealed had neither honour nor con-

science.

Foot-loose now, Galois announced a private class in higher

algebra, to meet once a week. Here he was at nineteen, a crea-

tive mathematician of the very first rank, peddling lessons to

no takers. The course was to have included ‘a new theory of

imaginaries [what is now known as the theory of “Galois

Imaginaries”, of great importance in algebra and the theory of

numbers]; the theory of the solution of equations by radicals,

and the theory of numbers and elliptic functions treated by
pure algebra’ - all his own work.

Finding no students, Galois temporarily abandoned mathe-

matics and joined the artillery of the National Guard, two of

whose four battalions were composed almost wholly of the

liberal group calling themselves ‘Friends of the People’. He had

not yet given up mathematics entirely. In one last desperate

effort to gain recognition, encouraged by Poisson, he had sent

a memoir on the general solution of equations ~ now called the

‘Galois theory’ - to the Academy of Sciences. Poisson, whose

name is remembered wherever the mathematical theories of

gravitation, electricity, and magnetisna are studied, was the

referee. He submitted a perfunctory report. The memoir, he

said was ‘incomprehensible’, but he did not state how long it

had taken him to reach Ms remarkable conclusion. This was the

last straw. Galois devoted all his energies to revolutionary

politics- ‘If a carcase is needed to stir up the people’, he wrote,

T will donate mine.’
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The ninth of IMay 1831 marked the beginning of the end.

About 200 young republicans held a banquet to protest against

the royal order disbanding the artillery which Galois had

joined. Toasts were drunk to the Revolutions of 1789 and 1793,

to Robespierre, and to the Revolution of 1830. The whole atmo-

sphere of the gathering was revolutionary and defiant. Galois

rose to propose a toast, Ms glass in one hand, Ms open pocket

knife in the other; ‘To Louis Philippe’ - the King. His com-

panions misunderstood the purpose of the toast and whistled

him down. Then they saw the open knife. Interpreting tMs as a

threat against the life of the King, they howled their approval,

A Mend of Galois, seeing the great Alexandre Dumas and other

notables passing by the open windows, implored Galois to sit

down, but the uproar continued. Galois was the hero of the

moment, and the artillerists adjourned to the street to celebrate

their exuberance by dancing all night. The following day Galoh

was arrested at Ms mother’s house and thrown into the prison

of Sainte-Pelagie.

A clever lawyer, with the help of Galois’ loyal friends, devised

an ingenious defence, to the effect that Galois had reaUy said;

‘To Louis Philippe, ifhe turns traitorJ* The open knife was easily

explained: Galois had been using it to cut his cMcken. TMs was

the fact. The saving clause in Ms toast, according to Ms friends

who swore they had heard it, was drowned by the wMstling,

and only those close to the speaker caught what was said.

Galois would not claim the saving clause.

During the trial Galois’ demeanour was one of haughty con-

tempt for the court and his accusers. Caring nothing for the

outcome, he launched into an impassioned tirade against all the

forces of political injustice. The judge was a human being with

children of Ms own. He warned the accused that he was not

helping his own case and sharply silenced Mm. The prosecution

quibbled over the point whether the restaurant where the inci-

dent occurred was or was not a ‘public place’ when used for a

semi-private banquet. On tMs nice point oflaw hung the liberty

of Galois, But it was evident that both court and jury were
moved by the youth of the accused. After only ten minutes’

ddiberation the jury returned a 'verdict of not guilty. Galois
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picked up his knife from the evidence table, closed it, slipped
it in his pocket, and left the court-room without a word.
He did not keep his freedom long. In less than a month, on

14 July 1831, he was arrested again, this time as a precau-
tionary measure. The republicans were about to hold a celebra-
tion, and Galois, being a ‘dangerous radical’ in the eyes of the
authorities, was locked up on no charge whatever. The govern-
ment papers of all France played up this brilliant coup of the
police. They now had ‘the dangerous republican, ^Evariste
Galois’, where he could not possibly start a revolution. But they
were hard put to it to find a legal accusation under which he
could be brought to trial. True, he had been armed to the teeth
when arrested, but he had not resisted arrest. Galois was no
fool. Should they accuse him of plotting against the Govern-
ment? Too strong; it wouldn’t go; no jury would convict. Ah!
After two months of incessant thought they succeeded in
trumping up a charge, men arrested Galois had been wearing
his artillery uniform. But the artillery had been disbanded.
Therefore Galois was guilty of illegally wearing a uniform.
This time they convicted him. A friend, arrested with him, got
three months; Galois got six. He was to be incarcerated in
Sainte-Pelagie tiU 29 April 1832. His sister said he looked about
fifty years old at the prospect of the sunless days ahead of him.
Why not? ‘LiCt justice prevail though the heavens fall.’

Discipline in the jail for political prisoners was light, and they
were treated with* reasonable humanity. The majority spent
their waking hours promenading in the courtyard reserved for
their use, or boozing in the canteen - the private graft of the
governor of the prison. Soon Galois, with hist sombre visage,
abstemious habits, and perpetual air of intense concentration,
became the butt of the jovial swilleis. He was concentrating on
his mathematics, but he could not help hearing the taunts
hurlfed at him.

‘What! You drink only water? Quit the Republican Party
and go back to your mathematics.’ - ‘Without wine and women
you 11 never be a man.’ Goaded beyond endurance Galois seized
a bottle of brandy, not knowing or caring what it was, and
drank it down. A decent fellow prisoner took care of him tin he

411



MEN or MATHEMATICS

recovered. His humiliation when he realized what he had done

devastated him.

At last he escaped from what one French writer of the time

calls the foulest sewer in Paris. The cholera epidemic of 1832

caused the solicitous authorities to transfer Galois to a hospital

on 16 March. The ‘important political prisoner’ who had threa-

tened the life of Louis Philippe was too precious to be exposed

to the epidemic.

Galois was put on parole, so he had only too many occasions

to see outsiders. Thus it happened that he experienced his one

and only love affair. In this, as in eversrthing else, he was unfor-

tunate. Some worthless girl (^quelque coquette de bos etage")

initiated him. Galois took it violently and was disgusted with

love, with himseK, and with his girl. To his devoted friend

Auguste Chevalier he wrote, ‘Your letter, full of apostolic

unction, has brought me a little peace. But how obliterate the

mark of emotions as violent as those which I have expe-

rienced? ... On re-reading your letter, I note a phrase in which

you accuse me of being inebriated by the putrefied slime of a

rotten world which has defiled my heart,* my head, and my
hands. . . Inebriation! I am disillusioned of everything, even

love and fame. How can a world which I detest defile me?*

This is dated 25 May 1832. Four days later he was at

liberty. He had planned to go into the country to rest and
meditate.

What happened on 29 May is not definitely known. Extracts

from two letters suggest what is usually accepted as the truth:

Galois had run foul of political enemies immediately after his

release. These ‘patriots’ were always spoiling for a fight, and it

fell to the unfortunate Galois’ lot to accommodate them in an
affair of ‘honour’. In a ‘Letter to All Republicans,’ dated 29

May 1832, Galois writes:

I beg patriots and my friends not to reproach me for
dying otherwise than formy country. I die the victim ofan
infamous coquette. It is in a miserahle brawl that my life

is extinguished. OhI why die for so trivial a thing, die for
something so despicable! ... Pardon for those who have
killed me, they are of gpod faith.
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In another letter to two unnamed friends :

I have been challenged by two patriots - it was impos-
sible for me to refuse. I beg your pardon for having advised
neither of you. But my opponents had put me on my
honour not to warn smy patriot. Your task is very simple:

prove that I fought in spite of myself, that is to say after

having exhausted every means of accommodation. . .

.

Preserv^e my memory since fate has not given me life

enough formy country to knowmy name. I die your friend

E. Galois.

These were the last words he wrote. All night, before writing

these letters, he had spent the fleeting hours feverishly Ha-ghing

off his scientific last will and testament, writing against time to

glean a few of the great things in his teeming mind before the

death which he foresaw could overtake him. Time after time he
broke off to scribble in the margin ‘I have not time; I have not

time,’ and passed on to the next frantically scrawled outline.

What he wrote in those desperate last hours before the dawn
will keep generations of mathematicians busy for hundreds of

years. He had found, once and for all, the true solution of a
riddle which had tormented mathematicians for centuries:

under what conditions can an equation be solved? But this was
only one thing of many. In this great work, Galois used the

theory of groups (see chapter on Cauchy) with brilliant success.

Galois was indeed one of the great pioneers in this abstract

theory, to-day of fundamental importance in all mathematics.

In addition to this distracted letter Gsdois entrusted his

scientific executor with some of the manuscripts which had
been intended for the Academy of Sciences. Fourteen years

later, in 1'846, Joseph Liouville edited some of the manuscripts

for the Journal de Mathematiques •putts et appliquees* Liouville,

himself a distinguished and original mathematician, and editor

of the great Journal, writes as follows in his introduction:

"The principal work of Evariste Galois has as its object the

conditions of solvability of equations by radicals. The author

lays the foundations of a general theory which he applies in

detail to equations whose degree is a prime number. Atthe age of
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sixteen, and while a student at the college of Louis-le-Grand . .

.

Galois occupied himself with this difficult subject/ Liou\ille

then states that the referees at the Academy had rejected

Galois’ memoirs on account of their obscurity. He continues:

‘An exaggerated desire for conciseness was the cause of tMs

defect which one should strive above all else to avoid when

treating the abstract and mysterious matters of pure Algebra,

Clarity is, indeed, aU the more necessary when one essays to

lead the reader farther from the beaten path and into wilder

territorj% As Descartes said, “When transcendental questions

are under discussion be transeendentally clear.” Too often

Galois neglected this precept; and we can understand how
illu^rious mathematicians may have judged it proper to try,

by the harshness of their sage advice, to turn a beginner, full

of genius but inexperienced, back on the right road. The author

they censured was before them, ardent, active; he could profit

by their advice.

‘Butnow everything is changed. Galois is no more! Let us not

indulge in useless criticisms; let us leave the defects there and

look at the merits.’ Continuing, liouville tells how he studied

the manuscripts, and singles out one perfect gem for special

mention.

‘My zeal was well rewarded, and I experienced an intense

pleasure at the moment when, having filled in some slight gaps,

I saw the complete correctness of the method by which Galois

proves, in particular, this beautifiil theorem: In order that an
irreducible equation of prime degree be solvable by radicals it is

necessary and sufficient that aU its roofs be rational functions of

any two of themJ *

Galois addressed his will to his faithful friend Auguste
Chevalier, to whom the world owes its preservation. ‘My dear
fiiend’, he began, *I have made some new discoveries in analy-

sis/ He then proceeds to outline such as he has time for. They
were epoch-making. He' concludes: ‘Ask Jacobi or Gauss
publicly to give their opinion, not as to the truth, but as to the
importance of these theorems. Later there wiU be, I hope, some

* The significance of this theorem will be clear if the reader will

glance tiuongh the extracts from Abel in Chapter 17.

414



GENIUS AND STUPIDITY

people who will find it to their advantage to decipher all this

mess. Je temhrasse avec effusion. E. Galois.’

Confiding Galois! Jacobi was generous; what would Gauss
have said? What did he say of Abel? Whst did he omit to say

of Cauchy, or of Lobatchew^sky? For all his bitter experience

Galois was still a hopeful boy.

At a verj’' early hour on 13 May 1832, Galois confronted his

adversary on the ‘field of honour’. The duel was with pistols at
twenty-five paces. Galois fell, shot through the intestines. No
surgeon was present. He was left lying where he had fallen. At
nine o’clock a passing peasant took him to the Cochin Hospital.

Galois knew he was about to die. Before the inevitable perito-

nitis set in, and while still in the full possession of his faculties,

he refused the offices of a priest. Perhaps he remembered his

father. His young brother, the only one of his family who had
been warned, arrived in tears. Galois tried to comfort him with
a show of stoicism. ‘Don’t cry’, he said, ‘I need all my courage

to die at twenty.’

Early in the morning of 31 May 1832 Galois died, being then
in the twenty-first year of his age. He was buried in the common
ditch of the South Cemetery, so that to-day there remains no
trace of the grave of ]6variste Galois. His enduring monument
is his collected works. They fill sixty pages.



CHAPTEE TWENTY-ONE

INVARIANT TWINS

Cayley ; Sylvester

*

‘It is difficult to give an idea of the vast extent of modem
mathematics. The word ‘‘extent” is not the right one: I mean

extent crowded with beautiful detail - not an extent of mere

uniformity such as an objectless plain> but of a tract of beautiful

country seen at first in the distance, but which will bear to be

rambled through and studied in every detail of hillside and

valley, stream, rock, wood, and flower. Rut, as for everything

else, so for a mathematical theory - beauty can be perceived

but not explained.’

These words from Cayley’s presidential address in 1883 to the

British Association for the Advancement of Science might well

be applied to his own colossal output. For prolific inventiveness

Euler, Cauchy, and Cayley are in a class by themselves, with

Poincare (who died younger than any of the others) a far

second. This applies only to the bulk of these men’s work; its

quality is another matter, to be judged partly by the frequency

with which the ideas originated by these giants recur in mathe-

matical research, partly by mere personal opinion, and partly

by national prejudice.

Cayley’s remarks about the vast extent of modern mathe-

matics suggest that we confine our attention to some of those

features of his own work which introduced distinctly new and

far-reaching ideas. The work on which his greatest fame rests

is in the theory of invariants and what grew naturally out of

that vast theory of which he, brilliantly sustained by his friend

Sylvester, was the originator and unsurpassed developer. The

concept of invariance is of great importance for modem phy-

sics, particularly in the theory of relativity, but this is not its

chief claim to attention. Physical theories are notoriously
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subject to re\usioii and rejection; the theory of invariance as a

permanent addition to pure mathematical thought appears to

rest on firmer ground.

Another of the ideas originated by Cayley, that of the geo-

metry of ‘higher space’ (space of n dimensions) is likewise of

present scientific significance but of incomparably greater

importance as pure mathematics. Similarly for the theory of

matrices, again an invention of Cayley’s. In non-Euclidean

geometry Cayley prepared the way for Klein’s splendid disco-

very that the geometry of Euclid and the non-Euclidean

geometries of Lobatchewsky and Riemann are, aU three, merely

different aspects of a more general kind of geometry which

includes them as special cases. The nature of these contributions

of Cayley’s will be briefly indicated after we have sketched his

life and that of his friend Sylvester.

The lives of Cayley and Sylvester should be written simulta-

neously, if that were possible. Each is a perfect foil to the other,

and the life of each, in large measure, supplies what is lacking

in that of the other. Cayley’s life was serene; Sylvester, as he

himself bitterly remarks, spent much of his spirit and energy

‘fighting the world’. Sylvester’s thought was at times as turbu-

lent as a millrace; Cayley’s was always strong, steady, and

unruffled. Only rarely did Cayley permit himself the printed

expression of anything less severe than a precise matheipatieal

statement - the simile quoted at the beginning of this chapter

is one of the rare exceptions; Sylvester could hardly talk about

mathematics without at once becoming almost orientally

poetic, and his unquenchable enthusiasm frequently caused

hirn to go off half-cocked. Yet these two became close friends

and inspired one another to some of the best work that either

of them did, for example in the theories of invariants and

matrices (described later).

With two such temperaments it is not surprising that the

course of friendship did not always run smoothly. Sylvester was

frequently on the point of exploding; Cayley sat serenely on the

safety valve, confident that his excitable friend would presently

cool down, when he would calmly resume whatever they had

been discussing as if Sylvester had never blown off, while
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Sylvester for ids part ignored his hot-headed indiscretion - till

he got himself all steamed up for another. In many ways this

strangely congenial pair were like a honejnnoon couple, except

that one party to the friendship never lost his temper. Although

Sylvester was Cayley’s senior by seven years, we shall begin

with Cayley, Sylvester’s life breaks naturally into the calm

stream of Cayley’s like a jagged rock in the middle of a deep

river.

Arthur Cayley was bom on 16 August 1821 at Richmond,

Surrey, the second son of his parents, then residing temporarily

in England. On his father’s side Cayley traced his descent back

to the days of the Norman Conquest (1066) and even before, to

a baronial estate in Normandy. The family was a talented one

which, like the Darwin family, should provide much suggestive

material for students of heredity. His mother was Maria

Antonia Doughty, by some said to have been of Russian origin.

Cayley’s father was an English merchant engaged in the Rus-
sian trade; Arthur was bora during one of the periodical visits

of his parents to England.

In 1829, when Arthur was eight, the merchant retired, to live

thenceforth in England. Arthur was sent to a private school at

Blackheath and later, at the of fourteen, to King’s College

School in London. His mathematical genius showed itself very
early. The first manifestations of superior talent were like tliose

of Gauss; young Cayley developed an amazing skill in long

numerical calculations which he undertook for amusement. On
beginning the formal study of mathematics he quickly out-

stripped the rest of the school. Presently he was in a class by
himself, as he was later when he went up to the University, and
his teachers agreed that the boy was a bom mathematician
who should make mathematics his career. In grateful contrast

to Galois’ teachers, Cayley’s recognized his ability from the
beginning and gave him every encouragement. At first the
retired merchant objected strongly to Ms son’s becoming a
mathematiciaii but finally, won over by the Principal of the
schod, gave bis consent, his blessing, and his money. He
decided to send his son to Cambridge,

Cayley bqgan bis timvezsiiy career at the age of seventeen at
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Trinity College, Cambridge. Among his fellow students he

passed as ‘a mere mathematician’ with a queer passion for

novel-reading. Cayley was indeed a lifelong devotee of the

somewhat stilted fiction, now considered classical, which

charmed readers of the 1840’s and ’50’s. Scott appears to have

been his favourite, with Jane Austen a close second. Later he

read Thackeray and disliked him; Dickens he could never

bring himself to read. B3rron’s tales in verse excited his admira-

tion, although his somewhat puritanical Victorian taste rebelled

at the best of the lot and he never made the acquaintance of

that diverting scapegrace Don Juan. Shakespeare’s plays, espe-

cially the comedies, were a perpetual delight to him. On the

more solid - or stodgier - side he read and re-read Grote’s

interminable History of Greece and Macaulay’s rhetorical

History of England, Classical Greek, acquired at school, re-

mained a reading-language for him all his life; French he read

and wrote as easily as English, and his knowledge of German
and Italian gave him plenty to read after he had exhausted the

Victorian classics (or they had exhausted him). The enjoyment

of solid fiction was only one of his diversions; others will be

noted as we go.

By the end of his third year at Cambridge Cayley was so far

in front of the rest in mathematics that the head examiner drew
a line under his name, putting the young man in a class by
himself ‘above the first’. In 1842, at the age of twenty-one,

Cayley was senior wrangler in the mathematical tripos, and in

the same year he was placed first in the yet more difficult test

for Snaith’s prize.

Under an excellent plan Cayley was now in line for a fellow-

ship which would enable him to do as he pleased for a few years.

He was elected Fellow of Trinity and assistant tutor for a

period of three years. His appointment might have been

renewed had he cared to take holy orders, but although Cayley

was an orthodox Church of England Christian he could not

quite stomach the thought of becoming a parson to hang on to

his job or to obtain a better one - as many did, without

disturbing either their faith or their conscience.

ffis duties were light almost to the point of non-existence,
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He took a few pupils, but not enough to hurt either himself or

his work. Making the best possible use of his liberty he con-

tinued the mathematical researches which he had begim as an

undergraduate. Like Abel, Galois, and many others who have

risen high in mathematics, Cayley went to the masters for his

inspiration. His first work, published in 1841 when he was an

undergraduate of twenty, grew out of his study of Lagrange

and Laplace.

With nothing to do but what he wanted to do after taking

his degree Cayley published eight papers the first year, four the

second, and thirteen the third. These early papers by the young

man who was not yet twenty-five when the last of them

appeared map out much of the work that is to occupy him for

the next fifty years. Already he has begun the study of geo-

metry of n dimensions (which he originated), the theory of

invariants, the enumerative geometry of plane curves, and his

distinctive contributions to the theory of elliptic functions.

During this extremely fruitful period he was no mere grind.

In 1843, when he was twenty-two, and occasionally thereafter

till he left Cambridge at the age of twenty-five, he escaped to

the Continent for delightful vacations of tramping, mountain-

eering, and water-colour sketching. Although he was slight and

frsul in appearance he was tough and wiry, and often after a

Jong night spent in tramping over MQy country, would turn up

as fresh as the dew for breakfast and ready to put in a few hours

at his mathematics. During his first trip he visited Switzerland

and did a lot of moxmtatneering. Thus began another lifelong

passion. His description of the ‘extent of modern mathematics’

is no mere academic exercise by a professor who had never

climbed a mountain or rambled lovingly over a tract of beau-

tiful country, but the accurate simile of a man who had known
nature intimately at first hand.

During the last four months of his first vacation abroad he
became acquainted with northern Italy. There began two
further interests which were to solace him for the rest of his

life: an imderstanding appreciation of architecture and a love

of good painting. He himself delighted in water-colours, in

which he showed marked talent. With his love of good litera-
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ture, travel, painting, and architecture, and with his deep

understanding of natural beauty, he had plenty to keep him

from degenerating into the ‘mere mathematician’ of conven-

tional literature - written for the most part by people who

may indeed have known some pedantic college professor of

mathematics, but who never in their lives saw a real mathe-

matician in the flesh.

In 1846, when he was twenty-five, Cayley left Cambridge.

No position as a mathematician was open to him unless possibly

he could square his conscience to the formality of ‘holy orders’.

As a mathematician Cayley felt no doubt that it would be

easier to square the circle. Anyhow, he left. The law, which with

the India Civil Service has absorbed much of England’s most

promisiog intellectual capital at one time or another, now
attracted Cayley. It is somewhat astonishing to see how many
of England’s leading barristers and judges in the nineteenth

century were high wranglers in the Cambridge tripos, but it

does not follow, as some have claimed, that a mathematical

training is a good preparation for the law. What seems less

doubtful is that it may be a social imbecility to put a young

man of Cayley’s demonstrated mathematical genius to drawing

up wills, transfers, and leases.

Following the usual custom of those looking toward an

Jfnglish legal career of the more gentlemanly grade (that is,

above the trade of solicitor), Cayley entered Lincoln’s Inn to

prepare himself for the Bar. After three years as a pupil of a

Mr Christie, Cayley was called to the Bar in 1849. He was then

twenty-eight. On being admitted to the Bar, Cayley made a

wise resolve not to let the law run off with bis brains. Deter-

mined not to rot, he rejected more business than he accepted.

For fourteen mortal years he stuck it, making an ample living

and deliberately turning away the opportunity to smother

himself in money and the somewhat blathery sort of renown

that comes to prominent barristers, in order that he might earn

enough, but no more than enougjvto enable him to get on with

Ms work.

BQs patience under the deadening routine of legal

business was exemplary, almost saintly, and his reputation in
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his hTanch of the profession (conveyancing) rose steadily. It is

even recorded that his name has passed into one of the law

books in connexion with an exemplary piece of legal work he

did* But it is extremely gratifying to record also that Cayley

was no milk-and-water saint but a normal human being who
could, when the occasion called for it, lose his temper. Once he
and his friend Sylvester were animatedly discussing some point

in the theory of invariants in Cayley’s office when the boy
entered and handed Cayley a large batch of legal papers for his

perusal. A glance at what was in his hands brought him down
to earth with a jolt. The prospect of spending days straigh-

tening out some petty muddle to save a few pounds to some
comfortable client’s already plethoric income was too much for

the man with real brains in his head. With an exclamation of

disgust and a contemptuous reference to the ‘wretched rubbish’

in his hands, he hurled the stuff to the floor and went on talking

mathematics. This, apparently, is the only instance on record

when Cayley lost his temper. Cayley got out of the law at the
first opportunity - after fourteen years of it. But during his

period of servitude he had published between 200 and 300
mathematical papers, many of which are now classic.

As Sylvester entered Cayley’s life during the legal phase we
shall introduce him here.

James Joseph - to give him first the name with which he wa|
bom - was the youngest of several brothers and sisters, and was
bom of Jewish parents on 3 September 1814 in London. Very
little is known of his childhood, as Sylvester appears to have
been reticent about his early years. His eldest brother emi-
grated to the United States, where he took the name of Syl-

vester, an example followed by the rest of the family. But why
an orthodox Jew should have decorated himself with a name
favoured by Christian popes hostile to Jews is a mystery.
Possibly that eldest brother had a sense of humour; anyhow,
plain James Joseph, son of Ahraham Joseph, became hence-
forth and for evermore James Joseph Sylvester.

like Cayley’s, Sylvester’s mathematical genius showed itself

early. Between the ages of six and fourteen he attended private
schools. The last five months of his fourteenth year were spent
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at the University of London, where he studied under De
Morgan. In a paper written in 1840 with the somewhat mystical

title On the Derivation of Coeoaistence, Sylvester says ‘I am in-

debted for this term [recurrents] to Professor De Morgan,
whose pupil I may boast to have been’.

In 1829, at the age of fifteen, Sylvester entered the Royal
Institution at Liverpool, where he stayed less than two years.

At the end of his first year he won the prize in mathematics.

By this time he was so far ahead of his fellow students in

mathematics that he was placed in a special class by himself.

\Thile at the Royal Institution he also won another prize. This

is of particular interest as it establishes the first contact of

Sylvester with the United States of America where some of the
happiest - also some of the most wretched - days of his life were
to be spent. The American brother, by profession an actuary,

had suggested to the Directors of the Lotteries Contractors of

the United States that they submit a difficult problem in

arrangements to young Sylvester. The budding mathemati-
cian’s solution was complete and practically most satisfying to

the Directors, who gave Sylvester a prize of 500 dollars for hia

efforts.

The years at Liverpool were far from happy. Always coura-

geous and open, Sylvester made no bones about his Jewish
faith, but proudly proclaimed it in the face of more than petty
persecution at the hands of the sturdy young barbarians at the
Institution who humorously called themselves Christians. Bat
there is a limit to what one lone peacock can stand from a pack
of dull jays, and Sylvester finally fled to Dublin with only a few
shillings in his pocket. Luckily he was recognized in the street

by a distant relative who took him in, straightenedhim out, and
paid his way back to Liverpool.

Here we note another curious coincidence: Dublin, or at least

one of its citizens, accorded the religious refugee from liveipocl

decent human treatment on his first visit; on his second, some
eleven years later. Trinity College, Dublin, granted him the

academic degrees (B.A. and M.A.) which his own alma mater,

Cambridge University, had refused him because he could not,

being a Jew, subscribe to that remarkable compost of nonsen-
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sical statements known as the Thirty-Nine Articles prescribed

by the Church of England as the minimum of religious belief

permissible to a rational mind. It may be added here, however,

that when English higher education finally unclutched itself

from the stranglehold of the dead hand of the Church in 1871

Sylvester was promptly given his degrees honoris causa. And it

^ould be remarked that in this as in other difficulties Sylvester

was no meek, long-sufiering martyr. He was full of strength and
courage, both physical and moral, and he knew how to put up
a devil of a fight to get justice for himself - and frequently did.

He was in fact a bom fighter with the untamed courage of a

lion.

In 1831, when he was just over seventeen, Sylvester entered

St John’s College, Cambridge. Owing to severe illnesses his

university career was interrupted, and he did not take the

mathematical tripos till 1837. He was placed second. The man
who beat him was never heard of again as a mathematician.
Not being a Christian, Sylvester was ineligible to compete for

Smith’s prizes.

In the breadth of his intellectual interests Sylvester resembles
Cayley. Physically the two men were nothing alike. Cayley,

though wiry and full of physical endurance as we have seen, was
frail in appearance and shy and retiring in manner. Sylvester,

short and stocky, with a magnificent head set firmly above
broad shoulders, gave the impression of tremendous strength
and vitality, and indeed he had both. One of his students said

he might have posed for the portrait of Hereward the Wake in

Charles Emgsley’s novel of the same name. As to interests out-
side of mathematics, Sylvester was much less restricted .and
far more liberal than Cayley. His knowledge of the Greek and
liatin classics in the originals was broad and exact, and he
tetained his love ofthem right up to his last illness. Many of his

papers are enlivened by quotations from these classics. The
quotations are always singularly apt and really do illuminate

the matter in band.

The same may be said for his allusions from other literatures.

It might amuse some literary scholar to go through the four
volumes of the collected M^athemaiical Papers and reconstruct
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Sylvester’s wide range of reading from the credited quotations

and the curious hints thrown out without explicit reference. In

addition to the English and classical literatures he was well

acquainted with the French, German, and Italian in the ori-

ginals. His interest in language and literary form was keen and

penetrating. To him is due most of the graphic terminology of

the theory of invariants. Commenting on his extensive coinage

of new mathematical terms from the mint of Greek and Latin,

Sylvester referred to himself as the ‘mathematical Adam’.

On the literary side it is quite possible that had he not been a

very great mathematician he might have been something a

little better than a merely passable poet. Verse, and the ‘laws*

of its construction, fascinated him all his life. On his own
account he left much verse (some of which has been published),

a sheaf of it in the form of sonnets. The subject-matter of his

verse is sometimes rather apt to raise a smile, but he frequently

showed that he understood what poetry is. Another interest on

the artistic side was music, in which he was an accomplished

amateur. It is said that he once took singing lessons from

Gounod and that he used to entertain working-men’s gather-

ings with his songs. He was prouder of his ‘high C’ than he was

of his invariants.

One of the many marked differences between Cayley and

Sylvester may be noted here: Cayley was an omnivorous reader

of other mathematicians’ work; Sylvester found it intolerably

irksome to attempt to master what others had done. Once, in

later life, he engaged a young man to teach him something

about elliptic functions as he wished to apply them to the

theory of numbers (in particular to the theory of partitions,

which deals with the number of ways a given number can be

made up by adding together numbers of a given kind, say all

odd, or some odd and some even). After about the third lesson

Sylvester had abandoned his attempt to learn and was lecturing

to the young man on his own latest discoveries in algebra. But

Cayley seemed to know everything, even about subjects in

which he seldom worked, and his advice as a referee was sought

by authors and editors from ail over Europe. Cayley never for-

got anything he had seen; Sylvester had difficulty in remem-
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bering his own inventions and once even disputed that a certain

theorem of his own could possibly be true. Even comparatively

trivial things that every worldng mathematician knows were

sources of perpetual wonder and dehght to Sylvester. As a

consequence almost any field of mathematics offered an en-

chanting world for discovery to Sylvester, while Cayley glanced

serenely over it all, saw what he wanted, took it, and went on to

something fresh.

In 1838, at the age of twenty-four, Sylvester got his first

regular job, that of Professor of Natural Philosophy (science in

general, physics in particular) at University College, London,

where his old teacher De Morgan was one of his colleagues.

Although he had studied chemistry at Cambridge, and retained

a lifelong interest in it, Sylvester found the teaching of science

thoroughly uncongenial and, after about two years, abandoned
it. In the meantime he had been elected a Fellow of the Royal
Society at the unusually early age of twenty-five. Sylvester’s

mathematical merits were so conspicuous that they could not

escape recognition, but they did not help him into a suitable

position.

At this point in his career Sylvester set out on one of the most
singular misadventures of his life. Depending upon how we look

at it, this mishap is silly, ludicrous, or tragic. Sanguine and filled

with his usual enthusiasm, he crossed the Atlantic to become
Professor of Mathematics at the University of Virginia in

1841 - the year in which Boole published his discovery of

invariants.

Sylvester endured the University only about three months.
The refusal of the University authorities to discipline a young
gentleman who had insulted him caused the professor to resign.

For over a year after this disastrous experience Sylvester tried

vainly to secure a suitable position, soliciting — unsuccessfully -

both Harvard and Columbia Universities. Failing, he returned
to England.

Sylvester’s experiences in America gave binn Ms fill of teach-
ing for the next ten years. On returning to London he became
an energetic actuary for a life insurance company. Such work
for E creative mathematician is poisonous drudgery,
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Sylvester almost ceased to be a matliematician. However, he

kept alive by taking a few private pupils, one of whom was to

leave a name that is known and fevered in every country of the

world to-day. This was in the early ISoO’s, the ‘potatoes,

prunes, and prisms’ era of female propriety when young women
were not supposed to think of much beyond dabbling in paints

and piety. So it is rather surprising to find that Sylvester’s most

distinguished pupil was a young woman, Florence Nightingale,

the first human being to get some decency and cleanliness into

military hospitals - over the outraged protests of bull-headed

military officialdom. Sylvester at the time was in his late

thirties, Miss Nightingale six years younger than her teacher.

Sylvester escaped from his makeshift ways of earning a living

iD the same year (1854) that Miss Nightingale went out to the

Crimean War.

Before this, however, he had taken another false step that

landed him nowhere. In 1846, at the age of thirty-two, he

entered the Inner Temple (where he coyly refers to himself as

‘a dove nestling among hawks’) to prepare for a legal career,

and in 1850 was called to the Bar. Thus he and Cayley came
together at last.

Cayley was twenty-nine, Sylvester thirty-six at the time;

both were out of the real jobs to which nature had called them.

Lecturing at Oxford thirty-five years later Sylvester paid

grateful tribute to ‘Cayley, who, though younger than myself is

my spiritual progenitor - who first opened my eyes and purged

them of dross so that they could see and accept the higher

mysteries of our common Mathematical faith.’ In 1852, shortly

after their acquaintance began, Sylvester refers to ‘Mr Cayley,

who habitually discomrses pearls and rubies’. Mr Cayley for his

part frequently mentions Mr Sylvester, but always in cold

blood, as it were. Sylvester’s earlier outburst of gratitude in

print occurs in a paper of 1851 where he says, ‘The theorem

above enunciated [it is his relation between the minor deter-

minants of linearly equivalent quadratic forms] was in part

suggested in the course of a conversation with Mr Cayley (to

whom I am indebted for my restoration to the enjoyment of

mathematical life). .

,
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Perhaps Sylvester overstated the case, but there was a lot ia

what he said. If he did not exactly rise from the dead he at least

got a new pair of lungs: from the hour of his meeting with

Cayley he breathed and lived mathematics to the end of his

days. The two friends used to tramp round the Courts of Lin-

coln’s Inn discussing the theory of invariants which both of

them were creating and later, when Sylvester moved away,

they contmued their mathematical rambles, meeting about

halfway between their respective lodgings. Both were bachelors

at the time.

The theory of algebraic invariants from which the various

extensions of the concept of invariance have grown naturally

originated in an extremely simple observation. As will he noted

in the chapter on Boole, the earliest instance of the idea appears

in Lagrange, from whom it passed into the arithmetical works

of Gauss. But neither of these men noticed that the simple but

remarkable algebraical phenomenon before them was the germ

of a vast theory. Nor does Boole seem to have fully realized

what he had found when he carried on and greatly extended the

work of Lagrange. Except for one slight tiff, Sylvester was

always Just and generous to Boole in the matter of priority, and

Cayley, of course, was always fair.

The simple observation mentioned above can be understood

by anyone who has ever seen a quadratic equation solved, and

is merely this. A necessary and sufficient condition that the

equation -f- c = 0 shall have two equal roots is that

— ac shall he zero. Let us replace the variable x by its value

in terms of y obtained by the transformation y = (prc -f q)l

{tx -r s). Thus a? is to be replaced by the result of solving this for

a?, namely a: = (g — sy)j{Ty — p). This transforms the given

equation into another in t/; say the new equation is Ay^ + 2By

-f C — 0. Carrying out the algebra we find that the new coeffi-

cients At, B, C are expressed in terms of the old a, i», c as follows,

A = as- — 2bsT -f

B = — aqs -f b(qr -j- sp) — cpr,

C = aq- — 2fypq -f- £P“.

From these it is easy to show {by hmte-force reductions, if
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necessary, although there is a simpler way of reasoning the

result out, without actually calculating A, B, C) that

~ AC = (ps -- qrY (&3 — ac).

Now 6® — flc is called the discriminant ofthe quadratic equation

in 05 ;
hence the discriminant of the quadratic in t/ is — AC,

and it has been shown that the discriminant of the transformed

equation is equal to the discriminant of the original equation, times

the factor {ps — gr)® which depends only upon the coefficients

p, g, r, s in the transformation y = (px + q)l(rx + s) by tneans

of which X was expressed in terms of y,

Boole was the first (in 1841) to observe something worth

looking at in this particular trifle. Every algebraic equation has

a discriminant, that is, a certain expression (such as — oc for

the quadratic) which is equal to zero if, and only if, two or more

roots of the equation are equal. Boole first asked, does the dis-

criminant of every equation when its x is replaced by the related

y (as was done for the quadratic) come back unchanged except

for a factor depending only on the coefiBcients of the transfor-

mation? He foxmd that this was true. Next he asked whether

there might not be expressions other than discriminants con-

structed from the coefficients having this same property of

inoariance under transformation. He found two such for the

general equation of the fourth degree. Then another man, the

brilliant young German mathematician, F. M. G. Eisenstein

(1823-52) following up a result of Boole’s, in 1844, discovered

that certain expressions involving both the coefficients and the x

ofthe original equations exhibit the same sort of invariance: the

original coefficients and the original x pass into the transformed

coefficients and y (as for the quadratic), and the expressions in

question constructed from the originals differ from those con-

structed from the transforms only by a factor which depends

solely on the coefficients of the transformation.

Neither Boole nor Eisenstein had any general method for

finding such invariant expressions. At this point Cayley entered

the field in 1845 with his pathbreaking memoir, On the Theory of

Linear Transformations. At the time he was twenty-four. He
set himself the problem of fiTiding uniform methods which
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would give him all the invariant expressions of the land

described* To avoid lengthy explanations the problem has been

stated in terms ofequations; actually it was attacked otherwise,

but this is of no importance here.

As this question of invariance is fundamental in modem
scientific thought we shall give three further illustrations of

what it means, none of which involves any symbols or algebra.

Imagine any figure consisting of intersecting straight lines and

curves drawn on a sheet of paper. Crumple the paper in any

way you please without tearing it, and try to think what is the

most obvious property of the figure that is the same before and

after crumpling. Do the same for any figure drawn on a sheet

of rubber, stretching but not tearing the rubber in any compli-

cated manner dictated by whim. In this case it is obvious that

sizes of areas and angles, and lengths of lines, have not remained

‘invariant*. By suitably stretching the rubber the straight lines

may be distorted into curves of almost any tortuosity you like,

and at the same time the original curves - or at least some of

them - may be transformed into straight Hues. Yet sometfiing

about the whole figure has remained unchanged; its very sim-

plicity and obviousness might well cause it to be overlooked.

This is the order of the points on any one of the lines of the

figure which mark the places where other lines intersect the

given one. Thus, if moving the pencil along a given line from
A to C, we had to pass over the point B on the Hne before the

figure was distorted, we shall have to pass over B in going from
A to C alter distortion. The order (as described) is an invariant

under the i)artictilar trimsforinaiions which crumpled the sheet

of paper into a crinkly ball, say, or which stretched the sheet

of rubber.'

This illustration may seem trivial, but anyone who has read
a non-mathematical description of the intersections of ‘world-

lines* iihgeneral relativity, and who recalls that an intersection

erf two such lines marks a physical ^pcdnt-event\ will see that
what we have been discussing is of the same stuff as one of our
pictures of the physical universe. The mathematical machinery
powerful enough to handle such complicated ‘txansformations*
and actually to produce the invariants was the creation of
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many workers, including Riemann, Christoffel, Ricci, Levi-

Civita, Lie, and Einstein - all names well known to readers of

popular accounts of relativity; the whole vast programme was

originated by the early workers in the theory of algebraic

invariants, of which Cayley and Sylvester were the true

founders,

, As a second example, imagine a knot to be looped in a string

whose ends are then tied together. Pulling at the knot, and

running it along the string, we distort it into any number of

‘shapes’. What remains ‘invariant’, what is ‘conserved’, under

allthese distortions which, in this case, are our transformations?

Ob\dously neither the shape nor the size of the knot is invariant.

But the ‘style’ of the knot itself is invariant; in a sense that

need not he elaborated, it is the same sort of a knot whatever we

do to the string provided we do not untie its ends. Again, in the

older physics, energy was ‘conserved’; the total amount of

energy in the universe was assumed to be an invariant, the same

under ‘all transformations from one form, such as electrical

energy, into others, such as heat and light.

Our third illustration of invariance need be little more than

an allusion to physical science. An observer fixes his ‘position’

in space and time with reference to three mutually perpendi-

cular axes and a standard timepiece. Another observer, moving

relatively to the first, wishes to describe the same physical event

that the first describes. He also has his space-time reference

system; his movement relatively to the first observer can be

expressed as a transformation of his own co-ordinates (or of the

other observer’s). The descriptions given by the two may or

may not differ in mathematical form, according to the parti-

cular kind of transformation concerned. If their descriptions do

differ, the difference is not, obviously, inherent in the physical

event they are both observing, but in their reference systems

aud the transformation. The problem then arises to formulate

only those mathematical expressions of natural phenomena

which shall be independent, mathematically, of any particuldr

reference system and therefore be expressed by all observers in

the same form. This is equivalent to finding the invariants of

the transformation which expresses the most general shift in
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‘space-time’ of one reference system with, respect to any otha:.

Thus the problem of finding the mathematical expressions for

the intrinsic laws of nature is replaced by an attackable one in

the theorj’- of invariants. More will be said on this when we come

to Riemann.

In 1863 Cambridge University established a new professor-

ship of mathematics (the Sadlerian) and offered the post to

Ca3rley, who promptly accepted. The same year, at the age of

forty-two, he married Susan Moline. Although he made less

money as a professor of mathematics than he had at the law,

Cayley did not regret the change. Some years later the affairs

of the University were reorganized and Cayley’s salary was

raised. His duties also were increased from one course of lectures

during one term to two. EEis life was now devoted almost

entirely to mathematical research and university administra-

tion. In the latter his soimd business training, even temper,

impersonal judgement, and legal experience proved invaluable.

He never had a great deal to say, but what he said was usually

accepted as final, for he never gave an opinion without having

reasoned the matter through. His marriage and home life were

happy; he had two children, a son and a daughter. As he

gradually aged his mind remained as vigorous as ever and his

nature became, if anything, gentler. No harsh judgement

uttered in his presence was allowed to pass without a quiet

protest. To younger men and beginners in mathematical careers

he was always generous with his help, encouragement, and

sound advice.

During his professorship the higher education of women was
a hotly contested issue. Cayley threw all his quiet, persuasive

influence on the side of civilization and largely through his

efforts women were at last admitted as students (in their own
nunneries of course) to the monkish seclusion of medieval

Cambridge.

While Cayley was serenely mathematieizing at Cambridge
his friend Sylvester was still fighting the world. Sylvester never

married. In 1854f, at the age of forty, he applied for the profes-

sorship of mathematics at the Royal Military Academy, Wool-
wich. He did not get it- Nor did he get another position for
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whieli he applied at Gresham College, London. His trial lecture

was too good for the governing board. However, the successful

Woolwich candidate died the following year and Sylvester was
appointed. Among his not too generous emoluments was the

right of pasturage on the common. As Sylvester kept neither

horse, cow, nor goat, and did not eat grass himself, it is difficult

to see what particular benefit he got out of this inestimable

boon.

Sylvester held the position at Woolwich for sixteen years, till

he was forcibly retired as ‘superannuated’ in 1870 at the age of

fifty-six. He was still full of vigour but could do nothing against

the hidebound officialdom against him. Much of his great work

was stiU in the future, but his superiors took it for granted that

a man of his age must be through.

Another aspect of his forced retirement roused all his fighting

instincts. To put the matter plainly, the authorities attempted

to swindle Sylvester out of part of the pension which was legiti-

mately his. Sylvester did not take it lying down. To their

chagrin the would-be g3rppers learned that they were not brow-

beating some meek old professor but a man who could give

them a little better than he took. They came through with the

full pension.

While all these disagreeable things were happening in his

material affairs Sylvester had no cause to complain on the

scientific side. Honours frequently came his way, among them
one of those most highly prized by scientific men, foreign corre-

spondent of the French Academy of Sciences. Sylvester was

elected in 1863 to the vacancy in the section ofgeometry caused

by the death of Steiner.

After his retirement from Woolwich Sylvester lived in Lon-

don, versifying, reading the classics, playing chess, and enjoy-

ing himself generally, but not doing much mathematics. In

1870 he published his pamphlet, The Lems of Verse, by which

he set great store. Then, in 1876, he suddenly came to mathe-

matical life again at the age of sixty-twb. The ‘old ’man was
simply inextinguishable.

The Johns Hopkins University had been founded at Balti-

more in 1875 under the brilliant leadership of President Gilman.
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Gilman had been advised to start off with an outstanding

classicist and the best mathematician he could afford as the

nucleus of his faculty. All the rest would follow, he was told,

and it did. Sylvester at last got a job where he might do prac-

tically as he pleased and in which he could do himself justice.

In 1876 he again crossed the Atlantic and took up his professor-

ship at Johns Hopkins. His salary was generous for those days,

five thousand dollars a year. In accepting the call Sylvester

made one curious stipulation; his salary was *to be paid in gold’.

Perhaps he was thinking of Woolwich, which gave him the

equivalent of $2750.00 (plus pasturage), and wished to be sure

that this time he really got what was coming to him, pension or

no pension.

The years from 1876 to 1883 spent at Johns Hopkins were

probably the happiest and most tranquil Sylvester had thus far

known. Although he did not have to ‘fight the world’ any longer

he did not recline on his honours and go to sleep. Forty years

seemed to fall from his shoulders and he became a vigorous

young man again, blazing with enthusiasm and scintillating

with new ideas. He was deeply gratefiil for the opportunity

Johns Hopkins gave him to begin his second mathematical

^
career at the age of sixty-three, and he was not backward in

expressing his gratitude publicly, in his address at the Com-
memoration Day Exercises of 1877.

In this Address he outlined what he hoped to do (he did it) in

his lectures and researches,

*There are things called Algebraical Forms. Professor Cayley
calls them Quantics. [Examples: + 2bxy -f cy^, aa^ -f

+ -f the numerical coefificients 1,2,1 in the first,

1,8,3,1 in the second, are binomial coefficients, as in the third

and fourth lines of Pascal’s triangle (Chapter 5); the next in

order would be aj^ -f + to/® -f j/^]. They are not,

properly speaking, GeometriGal Forms, although capable, to
some extent, ofbeing embodied in them, but rather schemes of
proce^, or of operations for forming, for ca-IUng into existence,

as it were, Algebraic quantities*

‘To every such Quantic is associated an infinite variety of
other forms that may be regarded as engendered from and
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floatiQg, like an atmosphere, around it - but infinite as were
these derived existences, these emanations from the parent

form, it is found that they admit of being obtained by composi-

tion, by mixture, so to say, of a certain limited number of

fundamental forms, standard rays, as they might be termed in

the Algebraic Spectrum of the Quantic to which they belong.

And, as it is a leading pursuit of the Physicists of the present

day [1877, and even to-day] to ascertain the fixed lines in the
spectrum of every chemical substance, so it is the aim and
object of a great school of mathematicians to make out the
fundamental derived forms, the Covarianis [that kind of "inva-

riant’ expression, already described, which involves both the
variables and the coefficients of the form or quantic] and
Invariants, as they are called, of these Quantics.’

To mathematical readers it will be evident that Sylvester is

here giving a very beautiful analogy for the fundamental
system and the syzygies for a given form; the non-mathematical
reader may be recommended to re-read the passage to catch the

spirit of the algebra Sylvester is talking about, as the analogy
is really a close one and as fine an example of ‘popularized’

mathematics as one is likely to find in a year’s marching.

In a footnote Sylvester presently remarks ‘I have at present a
class of from eight to ten students attendingmy lectures on the

Modem Higher Algebra. One of them, a young engineer,

engaged from eight in the morning to six at night in the duties

of his office, with an interval ofan hour and a half for his dinner

or lectures, has furnished me with the best proof, and the best

expressed, I have ever seen of what I call [a certain theorem].

. . Sylvester’s enthusiasm ~ he was past sixty - was that of a
prophet inspiring others to see the promised land which he
discovered or was about to discover. Here was teaching at its

best, at the only level, in fact, which justifies advanced teaching
at all.

He had complimentary things to say (m footnotes) about the
country of his adoption: . I believe there is no nation in the
world where ability with character counts for so much, and the
mere possession of wealth (in spite of all that we hear about the
Almighty dollar), for so little as in America. .

.
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He also tells how his dormant mathematical instincts were

again aroused to full creative power. ‘But for the persistence of

a student of this University [Johns Hopkins] in urging upon me
his desire to study with me the modern Algebra, I should never

have been led into this investigation. ... He stuck with perfect

respectfulness, but with invincible pertinacity, to his point.

He would have the New Algebra (Heaven knows where he had
heard about it, for it is almost unknown on this continent), that

or nothing. I was obliged to yield, and what was the conse-

quence? In trying to throw light on an obscure explanation in

our text-book, my brain took fire. I plunged with requickened

zeal into a subject which I had for years abandoned, and found

food for thoughts which have engaged my attention for a con-

siderable time past, and will probably occupy aU my powers of

contemplation advantageously for several months to come.’

Almost any public speech or longer paper of Sylvester’s con-

tains much that is quotable about mathematics in addition to

technicalities. A refreshing anthology for beginners and even
for seasoned mathematicians could be gathered from the pages

of his collected works. Probably no other mathematician has so

transparently revealed his personality through his writings as

has Sylvester. He liked meeting people and infecting them with
his own contagious enthusiasm for mathematics. Thus he says,

truly in his own case, ‘So long as a man remains a gregarious

and sociable being, he cannot cut himself off from the gratifica-

tion of the instinct of imparting what he is learning, of propa-
gating through others the ideas and impressions seething in his

own brain, without stunting and atroph5Tng his moral nature
and diyiog up the surest sources of his future intellectual

replenishment.’

As a pendant to Cayley’s description of the extent of modem
mathematics, we may hang Sylvester’s beside it. ‘I should be
sorry to suppose that I was to be left for long in sole possession

of so vast a field as is occupied by modem mathematics.
Mathematics is not a book confined within a cover and bound
between brazen clasps, whose contents it needs only patience to
ransack; it is not a mine, whose treasures may take long to
reduce into possession, but which fill only a limited number of
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veins and lodes; it is not a soil, whose fertility can be exhausted

by the yield of successive harvests; it is not a continent or an

ocean, whose area can be mapped out and its contour defined:

it is limitless as that space which it finds too narrow for its

aspirations; its possibilities are as infinite as the worlds which

are forever crowding in and multiplying upon the astronomer’s

gaze; it is as incapable of being restricted within assigned

boundaries or being reduced to definitions of permanent

validity, as the consciousness, the life, which seems to slumber

in each monad, in every atom of matter, in each leaf and bud
and cell, and is forever ready to burst forth into new forms of

vegetable and animal existence.’

In 1878 the American Journal ofMathematics was founded by
Sylvester and placed under his editorship by Johns Hopkins
University. The Journal gave mathematics in the United States

a tremendous urge in the right direction - research. To-day it is

still flourishing mathematically but hard pressed financially.

Two years later occurred one of the classic incidents in

Sylvester’s career. We tell it in the words of Dr Fabian Frank-

lin, Sylvester’s successor in the chair of mathematics at Johns

Hopkins for a few years and later editor of the Baltimore

American, who was an eye (and ear) witness.

‘He [Sylvester] made some excefient translations from

Horace and from German poets, besides writing a number of

pieces of original verse. The tours deforce in the way of rhyming,

which he performed while in Baltimore, were designed to illus-

trate the theories of versification of which he gives illustrations

in his little book called The Laws of Verse. The reading of the

Rosalind poem at the Peabody Institute was the occasion ofan
amusing exhibition of absence of mind. The poem consisted of

no less than four hundred lines, all rhyming with the name
Rosalind (the long and short sound of the i both being allowed).

The audience quite filled the hall, and expected to find much
interest or amusement in listening to this unique experiment in

verse. But Professor Sylvester had foxmd it necessary to write

a large number of explanatory footnotes, and he announced

that in order not to interrupt the poem he would read the foot-

notes in a body first. Nearly every footnote suggested some
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additional extempore remark, and the reader was so interested

in each one that he was not in the least aware of the flight of

time, or of the amusement of the audience. ^Vhen he had dis-

patched the last of the notes, he looked up at the clock, and was
horrified to find that he had kept the audience an hour and a

haK before beginning to read the poem they had come to hear.

The astonishment on his face was answered by a burst of good-

humoured laughter from the audience; and then, after begging

all Ms hearers to feel at perfect liberty to leave if they had
engagements, he read the Rosalind poem.*

Doctor Franklin's estimate ofMs teacher sums the man up
admirably; "Sylvester was quick-tempered and impatient, but

generous, charitable and tender-hearted. He was always ex-

tremely appreciative of the work of others and gave the

warmest recognition to any talent or ability displayed by his

pilpiis. He was capable of flying into a passion on slight provo-

cation, buthe did not harbour resentment, and was always glad

to forget the cause of quarrel at the earliest opportunity,*

Before taking up the thread of Cayley’s life where it crossed

Sylvester’s again, we shall let the author of Bosalind describe

how he made one of his most beautiful discoveries, that ofwhat
are called ‘canonical forms’. [This means merely the reduction

of a given ‘quantic* to a ‘standard’ form. For example -f

2h3By -f- cy^ can be expressed as the sum of two squares, say
y2. QQ*h ^ -j- lOcaj^l/2 4-

-f-

can be expressed as a sum of three fifth powers, X® -f-
y®

4-

‘I discovered and developed the whole theory of canonical

binary forms for odd degrees, and, so far as yet made out, for

even degrees* too, at one sitting, with a decanter of port wine

to sustain nature’s flagging energies, in a back office in Lincoln’s

Inn Fields. The work was done, and well done, but at the usual

cost of racking thought - a brain on fire, and feet feeling, or

feelingless, as if plunged in an ice-pail. Thai night we slept no

tTiore.* Experts agree that the symptoms are unmistakable. But

* This part ofthe theory was developed many years later by E. K.
Wakeford (1894-1916), who lost his life inthe First World War- ‘Now*
God be thanked who has matched us with his hour’ (Rupert Brooke).
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it must have been ripe port, to judge by what Sylvester got out

of the decanter.

Cayley and Sylvester came together again professionally

when Cayley accepted an invitation to lecture at Johns Hopkins

for a year in 1881-82. He chose Abelian fimctions, in which

he was researching at the time, as his topic, and the sisty-seven-

vear-old Sylvester faithfully attended every lecture of his

famous friend. Sylvester had still several prolific years ahead of

him, Cayley not quite so many.

We shall now briefly describe three of Ca^dey’s outstanding

contributions to mathematics in addition to his work on the

theory of algebraic invariants. It has already been mentioned

that he invented the theory of matrices, the geometry of space

of n dimensions, and that one of his ideas in geometry threw a

new light (in Klein’s hands) on non-Euclidean geometry. We
shall begin with the last because it is the hardest.

Desargues, Pascal, Poncelet, and others had created projec-

five geometry (see chapters 5, 18) in which the object is to dis-

cover those properties of figures which are invariant under

projection. Measurements - sizes of angles, lengths of lines -

and theorems which depend upon measurement, as for example

the Pythagorean proposition that the square on the longest side

of a right angle is equal to the sum of the squares on the other

two sides, are not projective but metrical, and are not handled

by ordinary projective geometry. It was one of Cayley’s greatest

achievements in geometry to transcend the barrier which,

before he leapt it, had separated projective from metrical pro-

perties of figures. From his higher point of yiew metrical geo-

metry also became projective, and the great power and flexi-

bility of projective methods were shown to be applicable, by

the introduction of ‘imaginary’ elements (for instance points

whose co-ordinates involve v/ — 1) to metrical properties.

Anyone w’ho has done any analytic geometry will recall that

two circles intersect in four points, two of which are always

‘imaginary’. (There are cases of apparent exception, for

example concentric circles, but this is close enough for our

purpose.) The fundamental notions in metrical geometry are the

distance between two points and the angle between two lines-

489 ^
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Replacing the concept of distance by another, also involving

‘imaginary’ elements, Cayley pro^dded the means for unifying

Euclidean geometryand the common non-EucIidean geometries

into one comprehensive theory. Without the use of some
algebra it is not feasible to give an intelligible account of how
this may be done; it is sufficient for our purpose to have noted

Cayley’s main advance of uniting projective and metrical

geometry with its cognate unification of the other geometries

just mentioned.

The matter of w-dimensional geometry when Cayley first put
it out was much more mysterious than it seems to us to-day,

accustomed as we are to the special case of four dimensions

(space-time) in relativity. It is still sometimes said that a four-

dimensional geometry is inconceivable to human beings. This

is a superstition which was exploded long ago by Pliicker; it is

easy to put four-dimensional figures on a flat sheet of paper,

and so far as geometry is concerned the whole of a four-dimen-

sional ‘space’ can be easily imagined. Consider first a rather

imeonventional three-dimensional space: all the circles that

may be drawn in a plane. This ‘all’ is a three-dimensional

‘space’ for the simple reason that it takes precisely three

numbers, or three co-ordinates, to individualize any one of the

swarm of circles, namely fsaro to fix the position of the centre

with reference to any arbitrarily given pair of axes, and one to

give the length of the radius.

Ifthe reader now wishes to visualize a four-dimensional space

he may think of straight lines, instead of points, as the element

out of which our common ‘solid’ space is built. Instead of our
familiar solid space looking like an agglomeration of infinitely

fine birdshot it now resembles a cosmic haystack of infinitely

thin, infinitely long straight straws. That it is indeed four-

dimensional in straight lines can be seen easOy if we convince
ourselves (as we may do) that precisely Jour numbers are neces-

sary and sufficient to individualize a particular straw in our
haystack. The ‘dimensionaliW’ of a ‘space’ can be anything we
choose to make it, provided we suitably select the elements
(points, circles, lines, etc.) out of which we build it. Of course
if we take points as the elements out of which our space is to be
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constructed, nobody outside of a lunatic asylum has yet suc-

ceeded in visualizing a space of more than three dimensions.

Modem physics is fast teaching some to shed their belief in a

» mysterious ‘absolute space’ over and above the mathematical

‘spaces’ - like Euclid’s, for example - that were constructed by

geometers to correlate their physical experiences. Geometry

to-day is largely a matter of analysis, but the old terminology

of ‘points’, ‘lines’, ‘distances’, and so on, is helpful in suggesting

interesting things to do with our sets of co-ordinates. But it

does not foUow that these particular things are the most useful

that might be done in analysis; it may turn out some day that

all of them are comparative trivialities by more significant

things which we, liideboxmd in outworn traditions, continue to

do merely because we lack imagination.

If there is any mysterious virtue in talking about situations

which arise in analysis as if we were back with Archimedes

drawing diagrams in the dust, it has yet to be revealed. Pictures

after allmay be suitable only for very young children ; Lagrange

dispensed entirely with such infantile aids when he composed

his analytical mechanics. Our propensity to ‘geometrize’ our

analysis may only be evidence that we have not yet grown up.

Newton himself, it is known, first got his marvellous results

analytically and reclothed them in the demonstrations of an

Apollonius partly because he knew that the multitude -

mathematicians less gifted than himself - would believe a

theorem true only if itwere accompanied by a pretty pictureand

a skilledEuclidean demonstration, partly because he himselt still

lingered by preference in the pre-Cartesian twilight ofgeometry-

The last of Cayley’s great inventions which we have selected

for mention is that of matrices and their algebra in its broad

outline. The subject originated in a memoir of 1858 and grew

directly out of simple observations on the way in which the

transformations (linear) of the theory of algebraic invariants

are combined. Glancing back at what was said on discriminants

and their invariance we note the transformation (the arrow is

liere read ‘is replaced by’) y— Suppose we have two
rx -r 3

such transformations,
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px ^ q Pz-^Q
Ez^ s’

the second of wliieh is to be applied to the 02 in the first. We get

{pP~ qE)z (pQ -f qS)

^ (rP - sE)z ^ {rQ ^ sS)‘

Attending only to the coefficients in the three transformations

we write them in square arrays, thus

|p
9

' ii-P Qii I'p-P -r giJ pQ + qS

jr s;:’ ilfi 5 ;i’ jjrP-i-siJ rQ -f sS j’

and see that the result of performing the first two transforma-

tions successively could have been written down by the follow-

ing rule of 'multiplication’,

Ip 9!! ^ pP «’j ^ ppi’ + qR PQ^ 9^]!
\r si i|i2 jjrP-fsS

where the roa’S of the array on the right are obtained, in an

obvious way, by applying the wxs of the first array on the left

onto the columns of the second. Such arrays (of any number of

rows and columns) are called matrices. Their algebra follows

from a few simple postulates, of which we need cite only the

following. The matrices are equal (by

definition) when, and only when, a = A^h B^c = C,d = D.

The sum of the two matrices just written is the matrix

la A h + result of multiplying h ^ by w
i;c -r t. a-f n

\
^

[Ic a

(any number) is the matrix The rule for ‘multi-
line ndij

pljdng’, X, (or ‘compounding’) matrices is as exemplified for

\P «
i, ii^ above.

11
r sli |jS Sji

A distinctive feature of these rules is that multiplication is

not cemmutativei except for special kmds of matrices. For

example, by the rule we get

X Sil = + Pq + Q.s

||B Sj. jr s!i + Rq+Ss ’
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and the matrix on the right is not equal to that which arises

&om the multiplication

r s B S
'

All this detail, particularly the last, has been given to illus-

trate a phenomenon of frequent occurrence in the history of

mathematics: the necessary mathematical tools for scientific

applications have often been invented decades before the

science to which the mathematics is the key was imagined. The

bizarre rule of ‘multiplication’ for matrices, by which we get

different results according to the order in which we do the

multiplication (unlike common algebra where a? = ?/ is always

equal toy X x), seems about as far from anything of scientific

or practical use as anything could possibly be. Yet sixty-seven

Tears after Cayley invented it, Heisenberg in 1925 recognized

in the algebra of matrices exactly the tool which he needed for

fais revolutionary work in quantum mechanics.

Cayley continued in creative activity up to the week of his

death, which occurred after a long and painful illness, borne

with resignation and unflinching courage, on 26 January 1895.

To quote the closing sentences of Forsyth’s biography: ‘But he

was more than a mathematician. With a singleness of aim,

which Wordsworth would have chosen for his “Happy War-

rior”, he persevered to the last in his nobly lived ideal. His life

had a significant influence on those who knew him [Forsyth was

a pupil of Cayley and became his successor at Cambridge] : they

admired his character as much as they respected Ms genius: and

they felt that, at his death, a great man had passed from the

world.’

Much of what Cayley did has passed into the main current of

mathematics, and it is probable that much more in his massive

Collected Mathematical Papers (thirteen large quarto volumes of

about 600 pages each, comprising 966 papers) will suggest

profitable forays to adventurous mathematicians for genera-

tions to come. At present the fashion is away from the fields of

Cayley’s greatest interest, and the same may be said for

Sylvester; but mathematics has a habit of returning to its old

problems to sweep them up into more inclusive syntheses.
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In 1833 Henry Jolm Stephen Smith, the hrOliant Irish

specialist in the theoiy of numbers and Saviiian Professor of

Geometry in Oxford UniTersity, died in his scientific prime at

the age of fifty-seven. Oxford invited the aged Sylvester, then

in his seventieth year, to take the vacant chair. Sylvester

accepted, much to the regret of his innumerable friends in

America. But he felt homesick for his native land which had
treated him none too generously; possibly also it gave him a

certain satisfaction to feel that ‘’the stone which the builders

rejected, the same is become the head of the corner’.

The amazing old man arrived in Oxford to take up his duties

with a brand-new mathematical theory (‘Reciprocants’ -

differential invariants) to spring on his advanced students. Any
praise or just recognition always seemed to inspire Sylvester to

outdo himself. Although he had been partly anticipated in his

latest work by the French mathematician Georges Halphen, he

stamped it with his peculiar genius and enlivened it with his

ineffaceable individuality.

The inaugural lecture, delivered on 12 December 1885 at

Oxford when Sylvester was seventy-one, has all the fire and
enthusiasm of his early years, perhaps more, because he now
felt secure and knew that he was recognized at last by that

snobbish world which had fought him. Two extracts will give

some idea of the style of the whole,

*1116 theory I am about to expotmd, or whose birth I am
about to announce, stands to this [“the great theory of Inva-

riants”] in the relation not of a younger sister, but of a brother,

who, though of later birth, on the principle that the masculine
is more worthy than the feminine, or at all events, according to

the regulations of the Salic law, is entitled to take precedence
over his elder sister, and exercise supreme sway over their

united realms.’

Commenting on the unaccountable absencb of a term in a
certain algebraic expression he waxes lyric.

‘Still, in the case before us, this unexpected absence of a
member of the family, whose appearance might have been
looked for, made an impression on my mind, and even went to

the extent of acting on my emotibns,^ I began to thinlr of it as a
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sort of lost PIdad in an Algebraical Constellation, and in the

end, brooding over the subject, my feelings found vent, or

sought relief, in a thymed effusion, a jeu de sottise, which, not

without some apprehension of appearing singular or extrava-

gant, I will venture to rehearse. It will at least serve as an inter-

lude, and give some relief to the strain upon your attention

before I proceed to make my final remarks on the general

theory.

TO A MISSING MEMBER
OF A FAMILY OF TERMS IN AN ALGEBRAICAL FORMULA

Lone and discarded one! divorced by fate,

From thy wished-forfellows - whither art flown?

Where lingeresi thou in thy bereaved estate.

Like some lost star or buried meteor stone?

Thou mindst me much of that presumptuous one

Who loth, aught less than greatest, to be great,

From Heaven"'s immensity fell headlong down
To live forlorn, self-centred, desolate:

Or who, new Heraklid, hard escile bore.

Now buoyed by hope, now stretched on rack offear.

Till throned Asiraea, wafting to his ear

Words of dim portent through the Atlantic roar.

Bade him ^^the sanctuary of the Muse revere

And strew with flame the dust of Isis" shore,""

Having refreshed ourselves and bathed the tips of our fingers in

the Pierian spring, let us turn hack for a few brief moments to

a light banquet of the reason, and entertain ourselves as a sort

of after-course with some general reflections arising naturally

out of the previous matter ofmy discourse.’

If the Pierian spring was the old boy’s finger bowl at this

astonishing feast of reason, it is a safe bet that the faithful

decanter of port was never very far from his elbow.

Sylvester’s sense of the kinship of mathematics to the finer

arts found frequent expression in his writings. Thus, in a paper

on Newton’s rule for the discovery of imaginary roots of alge-

braic equations, he asks in a footnote ‘May not Music be
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described as the Mathematic of sense, Mathematic as Music of

the reason? Thus the musician feels Mathematic, the mathe-

matician thinks Music - Music the dream, Mathematic the

vrorMng life - each to receive its consummation from the other

when the human intelligence, elevated to its perfect t^’pe, shall

shine forth glorified in some future Mozart-Diiichlet or Beet-

hoven-Gauss — a union aireadj' not indistinctly foreshadowed

in the genius and labours of a Helmholtz!’

S3dvester loved life, even when he was forced to fight it, and

if ever a man got the best that is in life out of it, he did. He
gloried in the fact that the great mathematicians, except for

what may he classed as avoidable or accidental deaths, have

been long-lived and \igorous of mind to their dying days. In

his presidential address to the British Association in 1869 he

called the honour roll of some of the greatest mathematicians

of the past and gave their ages at death to bear out his thesis

that . there is no study in the world which brings into more

harmonious action all the faculties of the mind than [mathe-

matics], ... or, like this, seems to raise them, by successive

steps of initiation, to higher and higher states of conscious

intellectual being. , . . The mathematician lives long and lives

young; the wings of the soul do not early drop off, nor do its

pores become clogged ^vith the earthy particles blown from the

dust\" highways of vulgar life.’

Sylvester was a living example of his own philosophy. But
even he at last began to bow to time. In 1893 - he was then

seventy-nine - his eyesight began to fail, and he became sad and

discouraged because he could no longer lecture with his old

enthusiasm- The following year he asked to he relieved of the

more onerous duties of his professorship, and retired to live,

lonely and dejected, in London or at Tunbridge WeUs. All his

brothers and sisters had long since died, and he had outlived

most of his dearest friends.

But even now he was not through. His mind was stfil vigor-

ous, although he himself felt that the keen edge of his inventive-

ness was dulled for ever. Late in 1896, in the eighty-second year

of his age, he found a new enthusiasm in a field which had
alwaj^ fascinated him, and he blazed up again over the theory
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of compound partitions and Goldbach’s conjecture that every

IS "fclic sum of two jennies*

He had not much longer, mule working at his mathematicsm his London rooms early in March 1897 he suffered a paraMic
stroke which destroyed his power ofspeech. He died on 15 March
1897, at the age of eighty-three. His life can be summed up in
Ms own words, ‘I really love my subject’.



CHAPTER TWENTY-TWO

MASTER AND PUPIL

Weiersirass; Sonja Kon'alewski

*

Young doctors in mathematicsj anxiously seeking positions in

which their training and talents may have some play, often ask

whether it is possible for a man to do elementary teaching for

long and keep alive mathematically. It is. The life of Boole is a

partial answer; the career of Weierstrass, the prince of analysts,

‘the father of modem analysis’, is conclusive.

Before considering Weierstrass in some detail, we place him

chronologically with respect to those of his German contem-

poraries, each of whom, like him, gave at least one vast empire

of mathematics a new outlook during the second half of the

nineteenth centuiy and the first three decades of the twentieth.

The year 1855, which marks the death of Gauss and the break-

ing of the last link with the outstanding mathematicians of the

preceding century, may be taken as a convenient point of refer-

ence. In 1855 Weierstrass (1815-97) was forty; Kronecker

(1S2S-91), thirty-two; Riemann (1826-66), twenty-nine; Dede-

kind (1831-1916), twenty-four; while Cantor (1845-1918) was

a small boy of ten. Thus German mathematics did not lack

recruits to cany on the great tradition of Gauss. Weierstrass

was just gaining recognition; Eronecker was well started; some

of Riemann’s greatest work was already behind him, and

Dedekmd was entering the field (the theory of numbers) in

which he was to gain his greatest fame. Cantor, of course, had
not yet been heard from.

We have juxtaposed these names and dates because four of

the men mentioned, dissimilar and totally unrelated as much of

their finest work was, came together on one of the central

problems of all mathematies, that of irrational numbers:

Weierstrass and Dedekind resumed the discussion of irrationals
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and continuity practically where Eudoxus had left it in the .

fourth century b.c.; Kronecker, a modern echo of Zeno, made
Weierstrass’ last years miserable by sceptical criticism of the

latter’s revision ofEudoxus; while Cantor, striking out on a new

road of his own, sought to compass the actual infinite itself

which is implicit - according to some - in the very concept of

continuity* Out of the work ofWeierstrass and Dedekind deve-

loped the modern epoch of analysis, that of critical logical

precision in analysis (the calculus, the theory of functions of a

complex variable, and the theory of functions of real variables)

in distinction to the looser intuitive methods of some of the

older writers - invaluable as heuristic guides to discovery but

quite worthless from the standpoint of the Pythagorean ideal

of mathematical proof. As has already been noted, Gauss, Abel,

and Cauchy inaugurated the first period of rigour; the move-

ment started by Weierstrass and Dedekind was on a higher

plane, suitable to the more exacting demands of analysis in the

second half of the century, for which the earlier precautions

were inadequate.

One discovery by Weierstrass in particular shocked the intui-

tive school of analysts into a decent regard for caution: he pro-

duced a continuous curve which has no tangent at any point.

Gauss once called mathematics ‘the science of the eye’; it takes

more than a good pair of eyes to ‘see’ the curve which Weier-

strass presented to the advocates of sensual intuition.

Since to every action there is an equal and apposite reaction

it was but natural that all this revamped rigour should engender

its own opposition. Kronecker attacked it vigorously, even

viciously, and quite exasperatingly. He denied that it meant

anything. Although he succeeded in hurting the venerable and

kindly Weierstrass, he made but little impression on his conser-

vative contemporaries and practically none on mathematical

analysis. Kronecker was a generation ahead of his time. Not till

the second decade of the twentietli century did his strictures on

the currently accepted doctrines of continuity and irrational

numbers receive serious consideration. To-day it is true that

not all mathematicians regard Kronecker’s attack as mer^y the

release of his pent-up envy of the more famous Weierstrass
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which some of his contemporaries imagined it to be, and it is

admitted that there may be something ~ not much, perhaps -

in his disturbing objections. “Whether there is or not, Kro-

necker's attack was partly responsible for the third period of

rigour in modem mathematical reasoning, that which we our-

selves are attempting to enjoy. Weierstrass was not the only

fellow-mathematician whom Kronecker harried; Cantor also

suffered deeply under what he considered his influential col-

league's malicious persecution. All these men will speak for

themselves in the proper place; here we are only attempting to

indicate that their lives and work were closely interwoven in

at least one comer of the goi^eous pattern.

To complete the picture we must indicate other points of

contact between Weierstrass, Kronecker, and Riemann on one

side and Kronecker and Dedekind on the other. Abel, we recall,

died in 1829, Galois in 1832, and Jacobi in 1851. In the epoch

under discussion one of the outstanding problems in mathe-
matical analysis was the completion of the work of Abel and
Jacobi on multiple periodic functions - elliptic functions,

Abelian functions (see chapters 17, 18). From totally different

points of -view Weierstrass and Riemann accomplished what
was to be done - Weierstrass indeed considered himself in some
degree a successor of Abel; Kronecker opened up new vistas in

elliptic functions but he did not compete with the other two in

the field of Abelian fimctions. Kronecker was primarily an
aiitiurietician and an algebraist; some of his best work went
into the elaboration and extension of the work of Galois in the
theory of equations. Thus Galois found a worthy successor not
too long after his death.

Apart from his forays into the domain of continuity and irra-

tionai numbers. Dedekind's most original work was in the
higher arithmetic, which he revolutionized and. renovated. In
this Kronecker was his able and sagacious rival, but again their

whole approaches were entirely different and characteristic of
the two men: Dedekind overcame his difficulties in the theory
of algebraic numbers by taking refuge in the infinite (in hfg

theory of ‘ideals’, as will be indicated in the proper place);

Kronecker sought to solve his problems in the finite.
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Karl Wilhelm Theodor Weierstrass, the eldest son of Wilhelm

Weierstrass (1790-18C9) and his wife Theodora Forst, was horn

on 31 October 1815, at Ostenfelde in the district of Miinster,

Germany. The father was then a customs officer in the pay of

the French. It may be recalled that 1815 was the year of

Waterloo; the French were still dominating Europe. That year

also saw the birth of Bismarck, and it is interesting to observe

that whereas the more famous statesman’s life work was shot

to pieces in World War I, if not earlier, the contributions of

his comparatively obscure contemporary to science and the

advancement of chdiization in general are even more highly

esteemed to-day than they were during his lifetime.

The Weierstrass family were devout liberal Catholics all their

lives; the father had been converted from Protestantism, pro-

bably at the time of his marriage. Karl had a brother, Peter

(died in 1904), and two sisters, Klara (1823-96), and Elise

(1826-98) who looked after Ms comfort all their lives. The

mother died in 1826, shortly after Elise’s birth, and the father

married again the following year. Little is known of Karl’s

mother, except that she appears to have regarded her husband

•^th a restrained aversion and to have looked on her marriage

Tvith moderated disgust. The stepmother was a typical German

housewife; her influence on the intellectual development of her

stepchildren was probably ml. The father, on the other hand,

was a practical idealist, and a man of culture who at one time

had been a teacher. The last ten years of his life were spent in

peaceful old age in the house of his famous son in Berlin, where

the two daughters also lived. None of the children ever married,

although poor Peter once showed an inclination toward matri-

mony which was promptly squelched by his father and sisters.

One possible discord in the natural sociability of the children

was the father’s uncompromising righteousness, domineering

authority, and Prussian pigheadedness. He nearly wrecked

Peter’s life with Ms everlasting lecturing and came perilously

close to doing the same by Karl, whom he attempted to force

into an uncongenial career without ascertaining where Ms

hriliiant young son’s abilities lay. Old Weierstrass had the

audacity to preach at his younger son and meddle in his aflairs
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till the ‘boy’ was nearly forty. Lucidly B[ari was made of more

resistant stuff. As we shall see his fight against his father -

although he himself was probably quite unaware that he was

fighting the tyrant - took the not unosual form of making a

mess of the life his father had chosen for him. It was as neat a

defence as he could possibly have devised, and the best of it was

that neither he nor his father ever dreamed what was hap-

pening, although a letter of KarFs when he was sixty shows that

he had at last realized the cause of his early difficulties. Karl at

last got his way, but it was a long, roundabout way, beset with

trials and errors. Only a shaggy man like himself, huge and

rugged of body and mind, could have won through to the end.

Shortly after Karl’s birth the family moved to Western-

kotten, Westphalia, where the father became a customs officer

at the salt works. Westemkotten, like other dismal holes in

which Weierstrass spent the best years of his life, is known in

Germany to-day only because Weierstrass once was condemned

to rot there - only he did not rust; his first published work is

dated as having been written in 1841 (be was then twenty-six)

at Westemkotten. There being no school in the village, Karl

was sent to the adjacent town of Munster whence, at fourteen,

he entered the Catholic Gymnasium at Paderbom. Lake Des-

cartes under somewhat similar conditions, Weierstrass

thoroughly enjoyed his school and made friends of his expert,

civilized instructors. He traversed the set course in considerably

less than the standard time, making a uniformly brilliant record

in all his studies. He left in 1834 at the age of nineteen. Prizes

fell his way with unfailing r^ularity; one year he carried off

seven; he was usually first in Grerman and in two of the three,

Latin, Greek, and mathematics. By a beautiful freak of irony

he never won a prize for calligraphy, although he was destined

to teach penmanship to little boys but recently emancipated

from their mother’s apron strings.

As mathematicians often have a liking for music it is of

interest to note here that Weierstrass, broad as he was, could

not tolerate music in any form. It meant nothing to him and he

did not pretend that it did. "When he had become a success his

solicitous sisters tried to get him to take music lessons to make
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him more conventional socially, but after a half-hearted lesson

or two he abandoned the distasteful project. Concerts bored

him and grand opera put him to sleep - when his sisters could

drag him out to either.

Like his good father, Karl was not only an idealist but was

also extremely practical - for a time. In addition to capturing

most of the prizes in purely impractical studies he secured a

paying job, at the age of fifteen, as accountant for a prosperous

female merchant in the ham and butter business.

All of these successes had a disastrous effect on Karl’s future.

Old ^yeie^st^ass, like many parents, drew the wrong conclusion

from his son’s triumphs. He ‘reasoned’ as follows. Because the

boy has won a cartload of prizes, therefore he must have a good

mind - this much may be admitted; and because he has kept

himself in pocket money by posting the honoured female butter

and ham merchant’s books efficiently, therefore he will be a

brilliant bookkeeper. Now what is the acme of all bookkeeping?

Obviously a government nest - in the higher branches of course

- in the Prussian civil service. But to prepare for this exalted

position, a knowledge of the law is desirable in order to pluck

effectively and to avoid being plucked.

As the grand conclusion of all this logic, paterfamilias Weier-

strass shoved his gifted son, at the age ofnineteen, head first into

the University of Bonn to master the chicaneries of commerce

and the quihblings of the law.

Karl had more sense than to attempt either. He devoted his

great bodily strength, his lightning dexterity, and his keen mind

almost exclusively to fencing and the meUow sociability that is

induced by nightly and liberal indulgence in honest German

beer. What a shocking example for ant-eyed Ph.D.’s who
shrink from a spcU of school-teaching lest their dim lights be

dimmed for ever! But to do what Weierstrass did, and get away

with it, one must have at least a tenth of his constitution and

not less than one tenth of 1 per cent of his brains.

Boim found Weierstrass unbeatable, Ifis quick eye, his long

teach, his devilish accuracy, and his lightning speed in fencing

made hlrn an opponent to admire but not to touch. As a matter

of historical fact he never was touched; no jagger scar adorned
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his cheeks, and in all his bouts he never lost a drop of blood.

Whether or not he was ever put under the table in the subse-

quent celebrations of his numerous \dctories is not known. His

discreet biographers are somewhat reticent on this important

point, but to anyone who has ever contemplated one of Weier-

strass’ mathematical masterpieces it is inconceivable that so

strong a head as his could ever have nodded over a half-gallon

stein. His four mis-spent years in the university were perhaps

after all well spent.

His experiences at Bonn did three things of the greatest

moment for Weierstrass: they cured him of his father fixation

without in any way damaging his affection for his deluded

parent; they made him a human being capable of entering fully

into the pathetic hopes and aspirations of human beings less

gifted than himself- his pupils - and thus contributed directly

to his success as probably the greatest mathematical teacher

of all time; and last, the humorous geniality of his boyhood

became a fixed life-habit. So the ‘student years’ were not the

loss his disappointed father and his fluttering sisters - to say

nothing of the panicky Peter - thought they were when Karl

returned, after four ‘empty’ years at Bonn, without a degree,

to the bosom of his wailing family.

There was a terrific row. They lectured him - ‘sick of body

and soul’ as he was, possibly the result of not enough law, too

little mathematics, and too much beer; they sat around and

glowered at him and, worst of all, they began to discuss him as

if he were dead: what was to be done with the corpse? Touching

the law, VTeierstrass had only one brief encounter with it at

Bonn, but it sufficed: he astonished the Dean and his friends by
his acute ‘opposition’ of a candidate for the doctor degree in

law* As for the mathematics at Bonn - it was inconsiderable.

The one gifted man, Julius Pliieker, who might have done

Weierstrass some good was so busy with his manifold duties

that he had no time to spare on individuals and Weierstrass got

nothing out of him.

But like Abel and so many other mathematicians of the first

rank, Weierstrass had gone to the masters in the interludes

between his fencing and drinking: he had been absorbing the
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Celestial Mechanics of Laplace, thereby laying the foundations

for his lifelong interest in dynamics and systems of simultaneous

diSerential equations. Of course he could get none of this

through the head of his cultured, petty-ofhcial father, and his

obedient brother and his dismayed sisters knew not what the

de\’il he was talking about. The fact alone was sufficient:

brother Karl, the genius of the timorous little family, on whom
such high hopes of bourgeois respectability had been placed,

had come home, after four years of rigid economy on father’s

part, T\dthout a degree.

At last - after weeks - a sensible friend of the family who had

s}Tnpathized with Karl as a boy, and who had an intelligent

amateur’s interest in mathematics, suggested a way out: let

Karl prepare himself at the neighbouring Academy of Minister

for the state teachers’ examination. Young Weierstrass would

not get a Ph.D. out of it, but his job as a teacher would provide

a certain amount of evening leisure in which he could keep alive

mathematically provided he had the right stuff in him. Freely

confessing his ‘sins’ to the authorities, Weierstrass begged the

opportunity’ of making a fresh start. His plea was granted, and

Weierstrass matriculated on 22 May 1839 at Munster to prepare

himself for a secondary school teaching career. This was a most

important stepping stone to his later mathematical eminence,

although at the time it looked like a total rout.

Wliat made all the difference to Weierstrass was the presence

at Munster of Christof Gudermann (1798-1852) as Professor of

Mathematics. Gudermann at the time (1839) was an enthusiast

for elliptic functions. We recall that Jacobi had published his

Fundamenta nova in 1829. Although few are now familiar with

Gudermann’s elaborate investigations (published at the instiga-

tion of Crelle in a series of articles in his Journal), he is not to be

dismissed as contemptuously as it is sometimes fashionable to

do merely because he is outmoded. For his time Gudermann
bzd what appears to have been an original idea. The theorj’ of

iiliptic functions can be developed in many’ different ways - too

nany for comfort. At one time some particular way seems the

}est; at another, a slightty different approach is highly adver-

ised for a season and is generally regarded as being more chic*
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Gudennann’s idea was to base everything on the power series

expansion of the functions. (This statement will have to do for

the moment; its meaning will become clear when we describe

one of the leading motivations of the work of Weierstrass.) This

really was a good new idea, and Gudermann slaved over it with

overwhelming German thoroughness for years without, perhaps,

realizing what lay behind his inspiration, and himself never

carried it through. The important thing to note here is that

Weierstrass made the theory of power series - Gudermann’s

inspiration - the nerve of ail his work in analysis. He got the

idea from Gudermann, whose lectures he attended. In later life,

contemplating the scope of the methods he had developed in

analysis, Weierstrass was wont to exclaim, “There is nothing

hut power series!’

At the opening lecture of Gudermann’s course on elliptic

functions (he called them by a different name, but that is of no

importance) there were thirteen auditors. Being in love with his

subject the lectucer quickly left the earth and was presently

soaring practically alone in the aether of pure thought. At the

second lecture only one auditor appeared and Gudermann was

happy. The solitary student was Weierstrass. Thereafter no

incautious third party ventured to profane the holy communion
between the lecturer and his unique disciple. Gudermann and

W’eierstrass were fellow Catholics; they got along splendidly

together.

Weierstrass was duly grateful for the pains Gudermann
lavished on him, and after he had become famous he seized

every opportunity - the more public the better - to proclaim

his gratitude for what Gudermann had done for him. The debt

was not inconsiderable: it is not every professor who can drop

a hint like the one - power series representation of functions as

a point of attack - which iospired Weierstrass. In addition to

the lectures on elliptic functions, Gudermann also gave Weier-

strass private lessons on ‘analytical spherics’ - whatever that

may have been.

In 1841 , at the age of twenty-six, Weierstrass took his exam-
inations for his teacher’s certificate. The examination was in

two sections, written and oral. For the first he was allowed six
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montlis in which to write out essays on three topics acceptable

to ihe examiners. The third question inspired a fine dissertation

on the Socratic method in secondary teaching, a method which
Weierstrass followed with brilliant success when he became the

foremost mathematical teacher of advanced students in the

world.

A teacher - at least in higher mathematics - is judged by his

students. If his students are enthusiastic about his ‘beautifully

dear lectures’, of which they take copious notes, but never do
any original mathematics themselves after getting their

advanced degrees, the teacher is a flat failure as a university

instructor and his proper sphere - if anywhere - is in a secon-

dary school or a small college where the aim is to produce tame
gentlemen but not independent thinkers. Weierstrass’ lectures

were models of perfection. But if they had been nothing more
than finished expositions they would have been pedagogically

worthless. To perfection of form Weierstrass added that intan-

gible something which is called inspiration. He did not rant

about the sublimity of mathematics and he never orated; but
somehow or another he made creative mathematicians out of a

disproportionately large fraction of his students.

The examination which admitted Weierstrass after a year of

probationary teaching to the profession of secondary school

work is one of the most extraordinary of its kind on record. One
of the essays which he submitted must be the most abstruse

production ever accepted in a teacher’s examination. At the

candidate’s request Gudermann had set Weierstrass a real

mathematical problem: to find the power series developments

ofthe elliptic functions. There was more than this, but the part

mentioned was probably the most interesting,

Gudermann’s report on the work might have changed the

course of Weierstrass’ life had it been listened to, but it made no
practical impression where it might have done good. In a post-

script to the official report Gudermann states that ‘This pro-

blem, which in general would be far too difficult for a young
analyst, was set at the candidate’s express request with the

consent of the commission.’ After the acceptance of his written

work and the successful conclusion of his oral examination^
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Weierstrass got a special certificate on his original contribution

to matheiTiatics. Ha\Tiig stated what the candidate had done,

and having pointed out the originality of the attack and the

novelty of some of the results attained, Gudermann declares

that the work evinces a fine mathematical tEilent ‘which, pro-

vided it is not frittered away, will ine\dtabiy contribute to the

advancement of science. For the author's sake and that of

science it is to be desired that he shall not become a secondary

teacher, but that favourable conditions will make it possible

for him to function in academic instruction. . . . The candidate

hereby enters by birthright into the ranks of the famous

discoverers,’

These remarks, in part underlined by Gudermann, were very

properly stricken from the official report. Weierstrass got his

certificate and that was all. At the age of twenty-six he entered

his trade of secondary teaching which was to absorb nearly

fifteen years of his life, including the decade from thirty to

forty which is usually rated as the most fertile in a scientific

man's career.

His work was excessive. Only a man with iron determination

and a rugged physique could have done what Weierstrass did.

The nights were his own and he lived a double life. Not that he

became a dull drudge; far from it. Nor did he pose as the \illage

scholar absorbed in mysterious meditations beyond the com-

prehension of ordinary mortals. With quiet satisfaction in his

later years he loved to dwell on the way he had fooled them all;

the gay government officials and the young officers found the

amiable school teacher a thoroughly good fellow and a lively

tavern companion.

But in addition to these boon companions of an occasion^

night out, Weierstrass had another, unknown to his happy-go-

lucky fellows - Abel, with whom he kept many a long rigil. He

himself said that Abel’s works were never veiy far from his

elbow. '^Vhen he became the leading analyst in the world and

the greatest mathematical teacher in Europe his first and last

adAuee to his numerous students was ‘Read xAhel!’ For the great

Norwegian he had an unbounded admiration imdimmed by any

shadow of envy, ‘Abel, the lucky fellowl’ he woiQd exclaim: ‘He
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has done something everlasting! His ideas will always exercise a

fertilizing influence on our science.’

The same might be said for Weierstrass, and the creative

ideas with which he fertilized mathematics were for the most

part thought out while he was an obscure schoolteacher in

(jismal \Hlages where advanced books were unobtainable, and

at a time of economic stress when the postage on a letter

absorbed a prohibitive part of the teacher’s meagre weekly

wage. Being unable to afford postage, Weierstrass was barred

from scientific correspondence. Perhaps it is as well that he was;

his originality developed unhampered by the fashionable ideas

of the time. The independence of outlook thus acquired charac-

terized his work in later years. In his lectures he aimed to

develop everything from the groimd up in his own way and

made almost no reference to the work of others. This occasion-

ally mystified his auditors as to what was the master’s and

what another’s.

It will be of interest to mathematical readers to note one or

two stages in Weierstrass’ scientific career. After his proba-

tionary year as a teacher at the Gymnasium at Munster,

Weierstrass wrote a memoir on analytic functions in which,

among other things, he arrived independently at Cauchy’s

integral theorem - the so-called fundamental theorem of

analysis. In 1842 he heard of Cauchy’s work but claimed no

priority (as a matter of fact Gauss had anticipated them both

away back in 1811, but as usual had laid his work aside to

ripen). In 1842, at the age of twenty-seven, Weierstrass applied

the methods he had developed to systems of differential equa-

tions - such as those occurring in the Newtonian problem of

three bodies, for example; the treatment was mature and

rigorous. These works were undertaken without thought of

publication merely to prepare the ground on which Weierstrass’

lifework (on Abelian functions) was to be built.

In 1842 Weierstrass was assistant teacher of mathematics

and physics at the Pro-Gymnasium in Deutsch-Kxone, West

Prussia, Presently he was promoted to the dignity of ordinary

teacher. In addition to the subjects mentioned the leading

analyst in Europe also taught German, geography, and writing
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to the little boys under his charge; gymnastics was added in

1845,

In 1848, at the age of thirty-three, Weierstrass was trans-

ferred as ordinary teacher to the Gymnasium at Braunsberg.

This was something of a promotion, but not much. The head of

the school was an excellent man who did what he could to make

things agreeable for Weierstrass although he had only a remote

conception of the intellectual eminence of his colleague. The

school boasted a very small library of carefully selected books

on mathematics and science.

It was in this year that Weierstrass turned aside for a few

weeks from his absorbing mathematics to indulge in a little

delicious mischief. The times were somewhat troubled politi-

cally; the Tiros of liberty had infected the patient German

people and at least a few of the bolder souls were out on the

warpath for democracy. The royalist party in power clamped a

strict censorship on all spoken or printed sentiments not suffi-

ciently laudatory to their regime. Fugitive hymns to liberty

began appearing in the papers. The authorities of course could

tolerate nothing so subversive of law and order as this, and

when Braunsherg suddenly blossomed out with a lush crop of

democratic poets all singing the praises of liberty in the local

paper, as yet uncensored, the flustered government hastily

appointed a local chil servant as censor and went to sleep,

believing that all would he well.

Unfortunately the newly appointed censor had a violent

aversion to aU forms of literature, poetry especially. He simply

could not bring himself to read the stuff! Confining his supervi-

sion to blue-pencilling the dull political prose, he turned over

all the literary efftisions to schoolteacher Weierstrass for cen-

soring. Weierstrass was delighted. Knowing that the official

censor would never glance at any poem, Weierstrass saw to it

that the most inflammatory ones were printed in full right

under the censor’s nose. This went merrily on to the great

delict of the populace till a higher official stepped in and put

an end to the farce. As the censor was the officially responsible

offender, Weierstrass escaped scot-free.

The obscure hamlet of Deutsch-Bfrone has the honour of
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being the place where Weierstrass (in 1842-43) ihrst broke into

print. German schools publish occasional ‘programmes’ con-

taining papers by members ofthe staff. Weierstrass contributed

Bemarks on Analytical Factorials. It is not necessary to explain

what these are; the point of interest here is that the subject of

factorials was one which had caused the elder analysts many a

profitless headache. Until Weierstrass attacked the problems

connected with factorials the nub of the matter had been

missed.

Crelie, we recall, wrote extensively on factorials, and we have

seen how interested he was when Abel somewhat rashly in-

formed him that his work contained serious oversights. Crelle

now enters once more, and again in the same fine spirit he

showed Abel.

Weierstrass’ work was not published till 1856, fourteen years

after it had been written, when Crelle printed it in his Journal.

Weierstrass was then famous. Admitting that the rigorous

treatment by Weierstrass clearly exposes the errors of his own
work, Crelle continues as follows: ‘I have never taken the

personal point of view in my work, nor have I striven for fame

and praise, but only for the advancement of truth to the best

of my ability; and it is aU one to me whoever it may be that

comes nearer to the truth - whether it is I or someone else,

provided only a closer approximation to the truth is attained.*

There was nothing neurotic about Crelle. Nor was there abput

Weierstrass.

Whether or not the tiny village of Deutsch-Krone is con-

spicuous on the map of politics and commerce it stands out like

the capital of an empire in the history of mathematics, for it

was there that Weierstrass, without even an apology for a

library and with no scientific connexions whatever, laid the

foundations of his life work - ‘to complete the life work of Abel

and Jacobi growing out of Abel’s Theorem and Jacobi’s dis-

covery of multiple periodic functions of several variables,’

Abel, he observes, cut down in the flower of his youth, had no

opportunity to follow out the consequences of his tremendous

discovery, and Jacobi had failed to see clearly that the true

meaning of his own work was to he sought in Abel’s Theorem^
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‘The consolidation and extension of these gains - the task of

actually exhibiting the functions and working out their pro-

perties - is one of the major problems of mathematics.’ Weier-

strass thus declares his intention of devoting his energies to this

problem as soon as he shall have understood it deeply and have

developed the necessarj’ tools. Later he tells how slowly he

progressed: ‘The fabrication of methods and other difiScuit

problems occupied my time. Thus years slipped away before I

could get at the main problem itself, hampered as I was by an

unfavourable en\lroiLment.’

The whole of Weierstrass’ work in analysis can be regarded

as a grand attack on his main problem. Isolated results, special

developments, and even extensive theories - for example that

of irrational numbers as developed by him - all originated ic

some phase or another of the central problem. He early became

convinced that for a dear understanding of what he was

attempting to do a radical revision of the fundamental concepts

of mathematical analysis was necessary, and from this convic-

tion he passed to another, of more significance to-day perhaps

than the central problem itself: analysis must be founded on the

common whole numbers 1,2,3, . . . The irrationals which give

us the concepts of limits and continuity, from which analysis

springs, must be referred back by irrefrangible reasoning to the

integers; shoddy proofe must be discarded or reworked, gaps

must be filled up, and obscure ‘axioms’ must be dragged out

into the light of critical inquiry till all are understood and all

are stated in comprehensible language in terms ofthe integers.

This in a sense is the Pythagorean dream of basing all mathe-

matics on the integers, but Weierstrass gave the programme
constructh’-e definiteness and made it work.

Thus originated the nineteenth-century movement known as

the arithmetization of analysis — something quite different from
Kronecker’s arithmetical programme, at which we shall glance

in a later chapter; indeed the two approached were mutually

antagonistic.

In passing it may be pointed out that Weierstrass’ plan for

his Hfe work and his magnificent accomplishment of most of

what he set himself as a young man to do, is a good Olustratloii
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of the value of the advice Felix Klein once gave a perplexed

student who had asked him the secret of mathematical disco-

very. ‘You must have a problem’, Edein replied. ‘Choose one

definite objective and drive ahead toward it. You may never

reach your goal, but you will find something of interest on the

way.’

From Deutsch-Krone Weierstrass moved to Braimsberg,

where he taught in the Royal Catholic Gymnasium for six

years, beginning in 1848. The school ‘programme’ for 1848-9

contains a paper by Weierstrass which must have astonished

the native: Contributions to the Theory of Abelian Integrals. If

this work had chanced to fall under the eyes of any of the pro-

fessional mathematicians of Germany, Weierstrass would have

been made. But, as his Swedish biographer, Mittag-Lefifier,

dniy remarks, one does not look for epochal papers on pure

mathematics in secondary-school programmes. W^eierstrass

might as well have used his paper to light his pipe.

EDs next effort fared better. The summer vacation of 1853

(Weierstrass was then thirty-eight) was passed in his father’s

house at TVestemkotten. Weierstrass spent the vacation writing

up a memoir on Abelian functions. When it was completed he

sent it to Crelle’s great Journal, It was accepted and appeared

in volume 47 (1854).

Thismay have been the paper whose composition was respon-

sible for an amusing incident in Weierstrass’ career as a school-

teacher at Braunsberg. Early one morning the director of the

school was startled by a terrific uproar proceeding from the

classroom where Weierstrass was supposed to be holding forth.

On investigation he discovered that Weierstrass had not shown

up. He hurried over to Weierstrass’ dwelling, and on knocking

was bidden to enter. There sat Whierstrass pondering by the

glimmering light of a lamp, the curtains of the room still drawn.

He had worked the whole night through and had not noticed

the approach of dawn. The director called his attention to the

fact that it was broad daylight and told him of the uproar in his

classroom, Weierstrass replied that he was on the trail of an

important discovery which would rouse great interest in the

scientific world and he could not possibly interrupt his work.
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The memoir on AbeKan functions published in Crelle’s

Journal in 1854 created a sensation. Here was a masterpiece

from the pen of an unknown schoolmaster in an obscure village

nobody in Berlin had ever heard of. This in itself was suffi-

ciently astonishing. But what surprised those who could appre-

ciate the magnitude of the work even more was the almost

unprecedented fact that the sontarj’ worker had published no

preliminary bulletins announcing his progress from time to

time, but with admirable restraint had held back everything

till the work was completed.

Writing to a friend some ten years later, Weierstrass gives

his modest version of his scientihe reticence: ‘. .

.

the infinite

emptiness and boredom of those years [as a schoolteacher]

would have been unendurable without the hard work that made
me a recluse - even if I was rated rather a good fellow by the

circle of my friends among the junkers, lawyers, and young
officers of the community. . . . The present offered nothing

worth mentioning, and it was not my custom to speak of the

future.’

Recognition was immediate. At the University of Konigs-

berg, where Jacobi had made his great discoveries in the field

which Weierstrass had now entered with a masterpiece of sur-

passing excellence, Riehelot, himself a worthy successor of

Jacobi in the theory of multiple periodic functions, was Pro-

fessor of Mathematics. His expert eyes saw at once what
Weierstrass had done. He forthwith persuaded his university

to confer the degree of doctor, honoris causa, on Weierstrass

and himself journeyed to Braunsberg to present the diploma.
At the dinner organized by the director of the Gymnasium in

Weierstrass’ honour Riehelot asserted that Ve have all found
our master in Mr Weierstrass’. The Ministry of Education
immediately promoted him and granted him a year’s leave to

prosecute his scientific work. Borchardt, the editor of Crelle’s

Journal at the time, hurried to Braunsberg to congratulate the
greatest analyst in the world, thus starting a warm friendship

’ which lasted till Borchardt’s death a quarter ofa century later.

None of this went to Weierstrass’ head. Although he was
deeply moved and profoundly grateful for all the generous
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recognition so promptly accorded him, he could not refrain

from easting a backward glance over his career. Years later,

thinking of the happiness of the occasion and of what that

occasion had opened up for him when he was forty years of age,

he remarked sadly that ‘everything in life comes too late.’

Weierstrass did not return to Braunsberg. No really suitable

position being open at the time, the leading German mathema-
ticians did what they could to tide over the emergency and got

Weierstrass appointed Professor of Mathematics at the Royal
Polytechnic School in Berlin. This appointment dated from

1 July 1856; in the autumn of the same year he was made
Assistant Professor (in addition to the other post) at the Uni-

versity of Berlin and was elected to the Berlin Academy.
The excitement of novel working conditions and the strain

of too much lecturing presently brought on a nervous break-

down. Weierstrass had also been overworking at his researches.

In the summer of 1859 he was forced to abandon his course and
take a rest cure. Returning inthe autumn he continued his work,

apparently refreshed, but in the following March was suddenly

attacked by spells of vertigo, and he collapsed in the middle of

a lecture.

All the rest of his life he was bothered with the same trouble

off and on, and after resuming his work - as full professor, with

a considerably lightened load - never trusted himself to write

Ms own formulae on the board. His custom was to sit where he
could see the class and the blackboard, and dictate to some
student delegated from the class what was to he written. One
of these ‘mouthpieces’ of the master developed a rash propen-

sity to try to improve on what he had been told to write.

Weierstrass would reach up and rub out the amateur’s efforts

and make him write what he had been told. Occasionally the

battle between the professor and the obstinate student would

go to several rounds, but in the end Weierstrass always won.

He had seen little boys misbehaving before.

As the fame of his work spread over Europe (and later to

America), Weierstrass’ classes began to grow rather unwiddy
and he would sometimes r^ret that the quality of his auditom

lagged far behind their rapidly mounting quantity* Neverthe-
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less he gathered about him an extremely able band of young

mathematicians who were absolutely devoted to him and who

did much to propagate his ideas, for Weierstrass was always

slow about publication, and without the broadcasting of his

lectures which his disciples took upon themselves his influence

on the mathematical thought of the nineteenth century would

have been considerably retarded.

'VYeierstrass was always accessible to his students and sin-

cerely interested in their problems, whether mathematical or

human. There was nothing of the ‘great man’ complex about

him, and he would as gladly walk home with any of the students

- and there were many - who eared to join him as with the most

famous of his colleagues, perhaps more gladly when the col-

league happened to be Kronecker. He was happiest when,

sitting at a table over a glass of wine with a few of his devoted

disciples, he became a jolly student again himself and insisted

on paying the bill for the crowd.

An anecdote (about i^Iittag-LefQer) may suggest that the

Europe of the present century has partly lost something it had

in the 1870’s. The Franco-Prussian war (1870-7'1) had left

France pretty sore at Germany. But it had not befogged the

minds of mathematicians regarding one another’s merits irre-

spective of their nationalities. The like holds for the Napoleonic

wars and the mutual esteem of the French and British mathe-

maticians. In 1873 ll^Iittag-Lefiaer arrived in Paris from Stock-

holm all set and full of enthusiasm to study analysis under

Heimite. ‘You have made a mistake, six’, Hermite told him:

“you should follow Weierstrass’ course at Berlin. He is the

master of all of us.’

Mittag-Leffler took the sound advice of the magnanimous

Frenchman and not so long afterwards made a capital discovery

ofhis own which is to be found to-day in all books on the theory

of functions. ‘Hermite was a Frenchman and a patriot’, !Mittag-

Leffler remarks; ‘I learned at the same time in what degree he

was also a mathematician.’

The years (1864-97) of Weierstrass’ career at Berlin as Pro-

fessor ofMathematics were full of scientific and human interests

for the man who was acknowledged as the leading anal5rst in
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the world. One phase of these interests demands more thart the

passing reference that might suffice in a purely scientific bio-

graphy of Weierstrass: his friendship with his favourite pupil,

Sonja (or Sophie) Kowalewski.

Madame* Kowalewski’s maiden name was Sonja Corvin-

Eroukowsky; she was born at Moscow, Russia, on 15 January

1850, and died at Stockholm, Sweden, on 10 February 1891, six

years before the death of Weierstrass.

At fifteen Sonja began the study of mathematics. By eigh-

teen she had made such rapid progress that she was ready for

advanced work and was enamoured of the subject. As she came
of an aristocratic and prosperous family, she was enabled to

gratify her ambition for foreign study and matriculated at the

University of Heidelberg.

This highly gifted girl became not only the leading woman
mathematician of modern times, but also made a reputation as

a leader in the movement for the emancipation of women,
particularly as regarded their age-old disabilities in the field of

higher education.

In addition to all this she was a brilliant writer. As a young
girl she hesitated long between mathematics and literature as a
career. After the composition of her most important mathe-
matical work (the prize memoir noted later), she turned to
literature as a relaxation and wrote the reminiscences of her

childhood in Russia in the form of a novel (published first in

Swedish and Danish). Of this work it is reported that "ihe

literary critics of Russia and Scandinavia were unanimous in

declaring that Sonja Kowalewski had equalled the best writers

of Russian literature in style and thought.’ Unfortunately thia

promising start was blocked by her premature death, and only

fragments of other literary works survive. Her one novel was
translated into many languages.

Although Weierstrass never married he was no panicky

bachelor who took to his heels every time he saw a pretty

woman coming. Sonja, according to competent judges who
knew her, was extremely good-looking. We must first teU how
she and Weierstrass met.

Weierstrass used to enjoy his summer vacations in a thor-
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oughly human manner. The Franco-Pmssian war caused him

to forego his usual summer trip in 1870, and he stayed in Berlin,

lecturing on elliptic functions. Owing to the war his class had

dwindled to only twenty instead of the fifty who heard the

lectures two years before. Since the autumn of 1869 Sonja

Kowalewski, then a dazzling young woman of nineteen, h^
been studying elliptic functions imder Leo Konigsberger (bom

1837) at the University of Heidelberg, where she had also

followed the lectures on physics by Kirchhoff and Helmholtz

and had met Bimsen the famous chemist under rather amusing

circumstances - to be related presently, Konigsberger, one of

Weierstrass’ first pupils, was a first-rate publicity agent for his

master, Sonja caught her teacher’s enthusiasm and resolved to

go direct to the master himself for inspiration and enlighten-

ment.

The status of unmarried women students in the 1870’s was

somewhat anomalous. To forestall gossip, Sonja at the age of

eighteen contractedwhat was to have been a nominal marriage,

left her husband in Russia, and set out for G^ermany. Her one

indiscretion in her dealings with Weierstrass was her neglect to

inform him at the beginning that she was married.

Having decided to learn from the master himself, Sonja took

her courage in her hands and called on Weierstrass in Berlin.

She was twenty, very earnest, very eager, and very determined;

he was fifty-five, vividly grateful for the lift Gudeimann had

given him toward becoming a mathematician by taking him on

as a pupO, and sympathetically understanding of the ambitions

ofyoung people. To hide her trepidation Sonja wore a large and

floppy hat, ‘so that Weierstrass saw nothing of those marv^ellous

•eyes whose eloquence, when she wished it, none could resist.’

Some two or three years later, on a visit to Heidelberg,

Weierstrass learned from Bunsen — a crabbed bachelor - that

Sonja was ‘a dangerous woman’, Weierstrass enjoyed his

friend’s terror hugely, as Bunsen at the time-was unaware that

Sonja had been receiving frequent private lessons from Weier-

strass for over two years.

Poor Bunsen based his estimate of Sonja on bitter personal

experience. He had proclaimed for years that no woman, and
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especially no Russian T^^oman, would ever be permitted to pro-

fane the masculine sanctity of his laboratory. One of Sonja’s

Russian girl friends, desiring ardently to study chemistry in

Bunsen’s laboratory, and ha\dng been thrown out herself, pre-

vailed upon Sonja to try her powers of persuasion on the crusty

chemist. Leaving her hat at home, Sonja interviewed Bunsen.

He was only too charmed to accept SonJa^s friend as a student

in his laboratory. After she left he woke up to what she had

done to him. ‘And now that woman has made me eat my own
words,’ he lamented to Weierstrass.

Sonja’s e\ident earnestness on her first visit impressed

Weierstrass favourably and he wrote to Kdnigsberger inquiring

about her mathematical aptitudes. He asked also whether ‘the

lady’s personality offers the necessary guarantees.’ On recehdng

an enthusiastic reply, Weierstrass tried to get the university

senate to admit Sonja to his mathematical lectures. Being

brusquely refused he took care of her himself in his own time.

Every Sunday afternoon was devoted to teaching Sonja at his

house, and once a week W’“eierstrass returned her visit. After

the first few lessons Sonja lost her hat. The lessons began in the

autumn of 1870 and continued with slight interruptions due to

vacations or illnesses till the autumn of 1874. When for any

reason the friends were unable to meet they corresponded.

After Sonja’s death in 1891 Weierstrass burnt all her letters to

him, together with much of his other correspondence and

probably more than one mathematical paper.

The correspondence between Weierstrass and his channing

young friend is warmly human, even when most of a letter is

given over to mathematics. Much of the correspondence was

undoubtedly of considerable scientific importance, but unfor-

tunately Sonja was a very untidy woman when it came to

papers, and most of what she left behind was fragmentary or

in hopeless confusion.

Weierstrass himself was no paragon in this respect. Without

keeping records he loaned his unpublished manuscripts right

and left to students who did not always return what they bor-

rowed. Some even brazenly rehashed parts of their teacher’s

work, spoiled it, and published the results as their own. Al-
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though \yeierstrass complains about this outrageous practice

in letters to Sonja Ms chagrin is not over the petty pilfering of

his ideas but of their bungling in incompetent hands and the

consequent damage to mathematics. Sonja of course never

descended to anything of this sort, but in another respect she

was not entirely blameless. Weierstrass sent her one of his

unpublished works by which he set great store, and that was

the last he ever saw of it. Apparently she lost it, for she dis-

creetly avoids the topic - to judge from his letters - whenever

he brings it up.

To compensate for this lapse Sonja tried her best to get

Weierstrass to exercise a little reasonable caution in regard to

the rest of his unpublished work. It was his custom to carrv

about with him on his frequent travels a large white wooden
box in which he kept all his working notes and the various

versions of papers which he had not yet perfected. His habit

was to rework a theorv^ many times until he found the best, the

"naturaP way in which it should be developed. Consequently he

published slowly and put out a work under his own name only

when he had exhausted the topic from some coherent point of

view. Several of his rough-hewn projects are said to have been

confided to the mysterious box. In 18S0, while Weierstrass was

on a vacation trip, the box was lost in the baggage. It has never

been heard of since.

After taking her degree in absentia from Gottingen in 1874,

Sonja returned to Russia for a rest as she was worn out by
excitement and overwork. Her fame bad preceded her and she

^rested* by plunging into the hectic futilities of a crowded social

season in St Petersburg while Weierstrass, back in Berlin, pulled

wires all over Europe trying to get his favourite pupil a position

worthy of her talents. His fruitless efforts disgusted him with

the narrowness of the orthodox academic mind.
In October 1875 Weierstrass received from Sonja the news

that her father had died. She apparently never replied to his

tender condolences, and for nearly three years she dropped
completely out of his life. In August 1878 he writes to ask

whether she ever received a letter he had written her so long

before that he has forgotten its date, ‘Didn’t you get my letter?
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Or what can be preventing you from confiding freely in me, your

best friend as you so often called me, as you used to do? This is

a riddle whose solution only you can give me, ,

.

In the same letter Weierstrass rather pathetically begs her to

contradict the rumour that she has abandoned mathematics:

Tchebychefi, a Russian mathematician, had called on Weier-

strass when he was out, but had told Borchardt that Sonja had

'gone social' , as indeed she had. ‘Send your letter to Berlin at

the old address’, he concludes; ‘it will certainly be forwarded to

me.’

Man's ingratitude to man is a familiar enough theme; Sonja

now demonstrated what a woman can do in that line when she

puts her mind to it. She did not answ^er her old friend’s letter

for two years although she knew he had been unhappy and in

poor health.

The answer when it did come was rather a let-down. Sonja’s

sex had got the better of her ambitions and she had been living

happily with her husband. Her misfortune at the time was to be

the focus for the flattery and unintelligent, sideshow wonder of

a superficially brilliant mob of artists, journalists, and dilettante

litterateurs who gabbled incessantly about her unsurpassable

genius. The shallow praise warmed and excited her. Had she

frequented the society of her intellectual peers she might still

have lived a normal life and have kept her enthusiasm. And she

would not have been tempted to treat the man who had formed
her mind as shabbily as she did.

In October 1878 Sonja’s daughter ‘Foufie’ was born.

The forced quiet after Foufie’s arrival roused the mother’s

dormant mathematical interests once more, and she wrote to

Weierstrass for technical ad\ice. He replied that he must look

up the relevant literature before venturing an opinion. Al-

though she had neglected him, he was still ready with his

ungrudging encouragement. His only regret (in a letter of

October 1880) is that her long silence has deprived him of

the opportunity of helping her. ‘But I don’t like to dwell

so much on the past - so let us keep the future before our

eyes,’

Material tribulations aroused Sonja to the truth. She was a
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boTn mathematician and could no more keep away from mathe-

matics than a duck can from water. So in October 1880 (she

was then thirty), she wrote begging Weierstrass to advise her

again. Xot waiting for his reply she packed up and left Moscow

for Berlin. His reply, had she received it, might have caused her

to stay where she was. Nevertheless when the distracted Sonja

arrived unexpectedlj’ he devoted a whole day to going over her

difficulties with her. He must have given her some pretty

straight talk, for when she returned to Moscow three months

later she went after her mathematics with such fury that her

gay friends and silly parasites no longer recognized her. At

Weierstrass’ suggestion she attacked the problem of the pro-

pagation of light in a crystalline mediinn.

In 1882 the correspondence takes two new turns, one of

which is of mathematical interest. The other is Weierstrass’

outspoken opinion that Sonja and her husband are unsuited to

one another, especially as the latter has no true appreciation

of her intelleetual merits. The mathematical point refers to

Poincare, then at the beginning of his career. With his sure

instinct for recognizing young talent, Weierstrass hails Poincare

as a coming man and hopes that he will outgrow his propensity

to publish too rapidly and let his researches ripen without

scattering them over too wide a field. To publish an article of

real merit everyweek - that is impossible’ , he remarks, referring

to Poincare’s deluge of papers.

Sonja’s domestic difficulties presently resolved themselves

through the sudden death of her husband in March 1883, She

was in Paris at the time, he in Moscow. The shock prostrated

her. For four days she shut herself up alone, refused food, lost

consciousness the fifth day, and on the sixth recovered, asked

for paper and pencil, and covered the paper with mathematical

formulae. By autumn she was herself again, attending a scien-

tific congress at Odessa.

Thanks to IMittag-Leffler, Madame Kowalewski at last

obtained a position where she could do herself justice; in the

autumn of 1884} she was lecturing at the University of Stock-

holm, where she was to be appointed (in 1889) as professor for

life. A little later she suffered a rather embarrassing setback
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when the Italian mathematician Vito Volterra pointed out a

serious mistake in her work on the refraction of light in crystal-

line media. This oversight had escaped Weierstrass, who at the

time was so overwhelmed with official duties that outside of

them he had ‘time only for eating, drinking, and sleeping. . .

.

In short’, he says, T am what the doctors call brain-weary.’ He

was now nearly seventy. But as his bodily tils increased his

intellect remained as powerful as ever.

The master’s seventieth birthday was made the occasion for

public honours and a gathering ofhis disciples and former pupils

from all over Europe. Thereafter he lectured publidy less and

less often, and for ten years received a few of his students at his

own house. 'When they saw that he was tired out they avoided

mathematics and talked of other things, or listened eagerly

while the companionable old man reminisced of his student

pranks and the dreary years of his isolation from all scientific

friends. His eightieth birthday was celebrated by an even more

impressive jubilee than his seventieth and he became in some

degree a national hero of the German people.

One of the greatest joys Weierstrass experienced in his de-

clining years was the recognition won at last by his favourite

pupil. On Christmas Eve, 1888, Sonja received in person the

Bordin Prize of the French Academy of Sciences for her memoir

On the rotation of a solid body about a fixed poinU

As is the rule in competition for such prizes, the memoir had

been submitted anonymously (the author’s name being in a

sealed envelope bearing on the outside the same motto as that

inscribed on the memoir, the envelope to be opened only if the

competing work won the prize), so there was no opportunity for

jealous rivals to hint at undue influence. In the opinion of the

judges the memoir was of such exceptional merit that they

raised the value of the prize from the previously announced

3,000 francs to 5,000. The monetary value, however, was the

least part of the prize.

Weierstrass was overjoyed- ‘I do not need to tell you’, he

writes, ‘how much your success has gladdened the hearts of

myself and my sisters, also of your friends here. I particularly

experienced a true satisfaction; competent judges have now
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delivered their verdict that my “‘faithful pupil”, my “vreak-

ness” is indeed not a ‘“frivolous humbug”.’

We may leave the friends in their moment of triumph. Two
years later (10 February 1891) Sonja died in Stockholm at the

age of forty-one after a brief attack of influenza which at the

time was epidemic. Weierstrass outlived her six years, dying

peacefully in his eightj^-seeond year on 19 February 1897 at his

home in Berlin after a long illness followed by influenza. His

last wish was that the priest say nothing in his praise at the

funeral but restrict the services to the customary prayers.

Sonja is buried in Stockholm, Weierstrass with his two sisters

in a Catholic cemetery in Berlin. Sonja also was of the Catholic

faith, belonging to the Eastern Church.

We shall now give some intimation of two of the basic ideas

on which Weierstrass foimded his work in analysis. Details or an

exact description are out ofthe question here, but may be found

in the earlier chapters of any competently written book on the

theory of functions.

A power series is an expression of the form

^0 "T T -r . . . -r -!-•••»

in which the coefficients aQ, 02 . . ., ... are constant

numbers and is a variable number; the numbers concerned

may be real or complex.

The sums of 1,2,3, . . . terms of the series, namely a^, 4-

^0 ~r -r . . . are called the partial sums. If for some

particular value of z these partial sums give a sequence of

numbers which converge to a definite limit, the power series is

said to converge to the same limit for that value of z.

All the values of z for which the power series converges to a

limit constitute the domain of convergence of the series; for any

value of the variable z in this domain the series converges; for

other values of z it diverges.

If the series converges for some value of s, its value can be

calculated to any desired degree of approximation, for that

value, by taking a sufficiently large number of terms.

Now, in the majority of mathematical problems which have

applications to science, the ‘answer’ is indicated as the solution
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in series of a differential equation (or system of such equations),

and this solution is only rarely obtainable as a finite expression

in terms of mathematical functions which have been tabulated

(for instance logarithms, trigonometric functions, elliptic func-

tions, etc.). In such problems it then becomes necessary to do
two things: prove that the series converges, if it does; calculate

its numerical values to the required accuracy.

If the series does not converge it is usually a sign that the

problem has been either incorrectly stated or wrongly solved.

The multitude of functions which present themselves in pure
mathematics are treated in the same way, whether they are

e\’er likely to have scientific applications or not, and finally a
general theory of convergence has been elaborated to cover vast

tracts of all this, so that the individual examination of a parti-

cular series is often referred to more inclusive investigations

already carried out.

Finally, all this (both pure and applied) is extended to power
series in 2, 3, 4, ... variables instead of the single variable z

above; for example, in tw’o variables,

a -t^qZ -{• -j- 4- Ciszt) -f- + . , .

.

It may be said that without the theory of power series most
of mathematical physics (including much of astronomy and
astro-physics) as we know it would not exist.

Difficulties arising with the concepts of limits, continuity,

and convergence drove Weierstrass to the creation of his theory

of irrational numbers.

Suppose we extract the square root of 2 as we did m school,

carrying the computation to a large number of decimal places.

We get as successive approximations to the required square root

the sequence of numbers 1, 1.4, 1.41, 1.412, With sufficient

labour, proceeding by well-defined steps according to the usual

rule, we could if necessary exhibit the first thousand, or the

first million, of the rational numbers 1, 1.4, ... constituting this

sequence of approximations. Examining this sequence we see

that when we have gone far enough we have determined a
perfectly defibnite rational number containing as many decimal

places as we please (say 1,000), and that this rational number
differs from any of the succeeding rational numbers in the
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sequence by a number (decimal), sucb as -000 . . * *000 * . ia

which a correspondingly large number of zeros occur before

another digit (1> 2, ... or 9} appears.

This illustrates what is meant by a convergent sequence of

numbers: the raiionals 1, 1-4, . . , constituting the sequence give

us ever closer approximations to the "irrational number’ which

we call the square root of 2, and which we conceive of as having

been defined by the convergent sequence of raiionals, this defini-

tion being in the sense that a method has been indicated (the

usual school one) of calculating any particular member of the

sequence in a finite number of steps*

Although it is impossible actually to exhibit the whole

sequence, as it does not stop at any finite number of terms,

nevertheless we regard the process for constructing any member

of the sequence as a sufficiently clear conception of the whole

sequence as a single definite object which we can reason about.

Doing so, we have a workable method for using the square root

of 2 and similarly for any irrational number, in mathematical

analysis.

As has been indicated it is impossible to make this precise m
an account like the present, but e%’en a careful statement might

disclose some of the logical objections glaringly apparent in the

above description - objections which inspired Kronecker and

others to attack Weierstrass’ ‘sequential’ definition of

irrationals.

Nevertheless, right or wrong, Weierstrass and his school

made the theory ucork* The most useful results they obtained

have not yet been questioned, at least on the ground of their

great utility in mathematical analysis and its applications, by

any competent judge in his right mind. This does not mean that

objections cannot he well taken: it merely calls attention to the

fact that in mathematics, as in everything else, this earth is not

yet to be confused with the Kingdom ofHeaven, that perfection

is a chimaera, and that, in the words of Crelle, we can only hope

for closer and closer approximations to mathematical truth -

whatever that may be, if anything - precisely as in the Weier-

strassian theory of convergent sequences of ratioiials defining

irrationals.
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After all, why should mathematicians, who are human beings

like the rest of us, always be so pedantically exact and so in-

humanly perfect? As Weierstrass said, ‘It is true that a mathe-

matician who is not also something of a poet will never be a

perfect mathematician’. That is the answer: a perfect mathe-

matician, by the very fact of his poetic perfection, would be a

mathematical impossibility.



CHAPTER TWENTY-THREE

COMPLETE INDEPENDENCE

Boole

*

‘Oh, we never read anjiJiing the English mathematicians do*’

This characteristically Continental remark was the reply of a

distinguished European mathematician when he was asked

whether he had seen some recent work of one of the leading

English mathematicians. The ‘‘we’ of his frank superiority in-

cluded Continental mathematicians in general.

This is not the sort of story that mathematicians like to tell

on themselves, but as it illustrates admirably that characteristic

of British mathematicians - insular originality" - which has been
the chief claim to distinction of the British school, it is an ideal

introduction to the life and work of one of the most insularly

original mathematicians England has produced, George Boole.

The fact is that British mathematicians have often serenely

gone their own way, doing the things that interested them
personally as if they were playing cricket for their own amuse-

ment only, with a self-satisfied disregard for what others,

shouting at the top of their scientific lungs, have assured the

world is of supreme importance. Sometimes, as in the prolonged

idolatry of Newton’s methods, indifference to the leading

fashions of the moment has cost the British school dearly, but

in the long run the take-it-or-leave-it attitude of this school has

added more new fields to mathematics than a slavish imitation

of the Continental masters could ever have done. The theory of

invariance is a case in point; Maxwell’s electrodynamic field

theory is another.

Although the British school has had its share of powerful

developers ofwork started elsewhere, its greater contribution to

the progress of mathematics has been in the direction of origi-

nality . Boole’s work is a striking illustration of this. When first
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put out it was ignored as mathematics

^

except by a few, chiefly

Boole's own more unorthodox countr^Tnen, who recognized

that here was the germ of something of supreme interest for all

mathematics. To-day the natural development of what Boole

started is rapidly becoming one of the major divisions of pure

mathematics, with scores of workers in practically all countries

extending it to all fields of mathematics where attempts are

being made to consolidate our gains on firmer formdations. As

Bertrand Russell remarked some years ago, pure mathematics

was discovered by George Boole in his work The Laws of Thought

published in 1854. This may be an exaggeration, but it gives a

measure of the importance in which mathematical logic and its

ramifications are held to-day. Ofhers before Boole, notably

Leibniz and De Morgan, had dreamed of adding logic itself to

the domain of algebra; Boole did it.

George Boole was not, like some of the other originators in

mathema-tics, born into the lowest economic stratum of society.

Eds fate was much harder. He was born on 2 November 1815 at

Lincoln, England, and was the son of a petty shopkeeper. If we
can credit the pictxire drawn by English writers themselves of

those hearty old days - 1815 was the year of Waterloo - to be

the son of a small tradesman at that time was to be damned by
foreordination.

The whole class to which Boole’s father belonged was treated

with a contempt a trifle more contemptuous than that reserved

for enslaved scullery maids and despised second footmen. The

lower classes’, into whose ranks Boole had been bom, simply

did not exist in the eyes of the ‘upper classes’ - including the

more prosperous wine merchants and moneylenders. It was

taken for granted that a child in Boole’s station should dutifully

and gratefully master the shorter catechism and so live as never

to transgress the strict limits of obedience imposed by that

remarkable testimonial to human conceit and class-conscious

snobbery.

To say that Boole’s early struggles to educate himself into a

station above that to which It had pleased God to him’

were a fair imitation of purgatory is putting it mildly. By an

act of divine providence Boole’s great spirit had been assigned
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to the meanest class; let it stay there then and stew in its own
ambitious juice. Americans may like to recall that Abraham
Lincoln, only six years older than Boole, had his struggle about

the same time. Lincoln was not sneered at but encouraged.

The schools where young gentlemen were taught to knock
one another about in training for their future parts as leaders

in the sweatshop and coal mine systems then coming into vogue

were not for the hkes of George Boole. No; his ‘National School’

was designed chiefly with the end in view of keeping the poor

in their proper, unwashable place.

A wretched smattering of Latin, with perhaps a slight expo-

sure to Greek, was one of the mystical stigmata of a gentleman

in those incomprehensible days of the sooty industrial revolu-

tion. Although few of the boys ever mastered Latin enough to

enable them to read it without a crib, an assumed knowledge of

its grammar was one of the hallmarks of gentility, and its syn-

tax, memorized by rote, was, oddly enough, esteemed as mental

discipline of the highest usefulness in preparation for the

ownership and conservation of property.

Of course no Latin was taught in the school that Boole was
permitted to attend. Making a pathetically mistaken diagnosis

of the abilities which enabled the propertied class to govern

those beneath them in the scale of wealth, Boole decided that

he must learn Latin and Greek if he was ever to get his feet out

of the mire. This was Boole’s mistake. Latin and Greek had
nothing to do with the cause of his difficulties. He did teach

himself Latin with his poor struggling father’s sympathetic
encouragement. Although the poverty-stricken tradesman
knew that he himself would never escape he did what he could

to open the door for his son. He knew no Latin. The struggling

boy appealed to another tradesman, a small bookseller and
friend of his father. This good man could only give the boy a

start in the elementary grammar. Thereafter Boole had to go it

alone. Anyone who has watched even a good teacher trying to

get a normal child of eight through Caesar will realize what the

untutored Boole was up against. By the age of twelve he had
mastered enou^ Latin to translate an ode of Horace into

English verse. His father, hopefully proud but understanding
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nothing of the technical merits of the translation, had it printed

in the local paper. This precipitated a scholarly row, partly

flattering to Boole, partly humiliating.

A classical master denied that a boy of twelve could have

produced such a translation. Little boys of twelve often know

more about some things than their forgetful elders give them

credit for. On the technical side grave defects showed up. Boole

was humiliated and resolved to supply the deficiencies of his

self-instruction. He had also taught himself Greek. Determined

now to do a good job or none he spent the next two years slav-

ing over Latin and Greek, again without help. The effect of all

this drudgerj' is plainly apparent in the dignity and marked

Latinity of much of Boole’s prose.

Boole got his early mathematical instruction from his father,

who had gone considerably beyond his own meagre schooling by

private study. The father had also tried to interest his son in

another hobby, that of making optical instruments, but Boole,

bent on his own ambition, stuck to it that the classics were the

key to dominant living. After finishing his common schooling he

took a commercial course. This time his diagnosis was better,

but it did not help him greatly. By the age of sixteen he saw

that he must contribute at once to the support of his wretched

parents. School teaching offered the most immediate opportu-

nity of earning steady wages - in Boole’s day ‘ushers’, as assis-

tant teachers were called, were not paid salaries but wages.

There is more than a monetary difference between the two. It

may have been about this time that the immortal Squeers, in

Dickens’ Nicholas Nickleby, was making his great but unappre-

ciated contribution to modem pedagogy at Dotheboys HaH
with his brilliant anticipation of the ‘project’ method. Young

Boole may even have been one of Squeers’ ushers; he taught at

two schools-

Boole spent four more or less happy years teaching in these

elementary schools. The chilly nights, at least, long after the

pupils were safely and mercifully asleep, were his own. He still

was on the wrong track. A third diagnosis of his social unworthi-

ness was similar to his second but a considerable advance over

both his first and second. Lacking anything in the way of
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capital ~ practically every penny the young man earned went

to the support of his parents and the barest necessities of his

own meagre existence - Boole now cast an appraising eye over

the gentlemanly professions. The Army at that time was out of

his reach as he could not afford to purchase a commission. The

Bar made obvious financial and educational demands which he

had no prospect of satisfying. Teaching, of the grade in which

he was then engaged, was not even a reputable trade, let alone

a profession. remained? Only the Church. Boole resolved

to become a clergyman.

In spite of all that has been said for and against God, it must

be admitted even by his severest critics that he has a sense of

humour. Seeing the ridiculousness of George Boole’s ever be-

coming a'clergyman, he skilfully turned the young man’s eager

ambition into less preposterous channels. An unforeseen afBio

tion of greater poverty than any they had yet enjoj^ed com-

pelled Boole's parents to urge their son to forego all thoughts

of ecclesiastical eminence. But his four years of private prepara-

tion (and rigid privation) for the career he had planned were

not wholly wasted; he had acquired a mastery of French,

German, and Italian, all destined to be of indispensable service

to him on his true road.

At last he found himself. His father’s early instruction now
bore fruit- In his twentieth year Boole opened up a civilized

school of his own. To prepare his pupils properly he had to

teach them some mathematics as it should be taught. His

interest was aroused. Soon the ordinary and execrable text-

books of the day awoke his wonder, then his contempt. Was this

stuff mathematics? Incredible. What did the great masters of

mathematics say? Like Abel and Galois, Boole went directly to

great headquarters for his marching orders. It must be remem-

bered that he had had no mathematical training beyond the

rudiments. To get some idea of his mental capacity we can

imagine the lonely student of twenty mastering, by his own
unaided efforts, the Mecanique celeste of Laplace, one of the

toughest masterpieces ever written for a conscientious student

to assimilate, for the mathematical reasoning in it is full of gaps

and enigmatical declarations that 'it is easy to see’, and then
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we must think of him making a thorough, understanding study

of the excessively abstract Micanique analytique of Lagrange,

in which there is not a single diagram to illuminate the analysis

from beginning to end. Yet Boole, self-taught, foimd his way

and saw what he was doing. He even got his first contribution to

mathematics out of his unguided efforts. This was a paper on

the calculus of variations.

Another gain that Boole got out of all this lonely study

desers-^es a separate paragraph to itself. He discovered invari-

ants. The significance of this great discovery which Cayley and

Sylvester were to develop in grand fashion has been sufficiently

explained; here we repeat that without the mathematical

theory of invariance (which grew out of the early algebraic

work) the theory of relativity would have been impossible.

Thus at the very threshold of his scientific career Boole noticed

something lying at his feet which Lagrange himself might

easily have seen, picked it up, and found that he had a gem of

the first water. That Boole saw what others had overlooked was

due no doubt to his strong feeling for the symmetry" and beauty

of algebraic relations - when of cotirse they happen to be both

symmetrical and beautiful; they are not always. Others might

have thought his find merely pretty. Boole recognized that it

belonged to a higher order.

Opportunities for mathematical publication in Boole's day

were inadequate unless an author happened to be a member of

some learned society with a journal or transactions of its own.

Luckily for Boole, The Cambridge Mathematical Journal, under

the able editorship of the Scotch mathematician, D. F. Gregoiy,

was founded in 1837. Boole submitted some of his work. Its

originality and style impressed Gregory favourably, and a cor-

dial mathematical correspondence began a friendship which

lasted out Boole’s life.

It would take us too far afield to discuss here the great con-

tribution which the British school was making at the time to

the understanding of algebra as algebra, that is, as the abstract

development of the consequences of a set of postulates without

necessarily any interpretation or application to ‘numbers* or

anything else, but it may be mentioned that the modem con-
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ception of algebra began with the British ‘reformers*, Peacock,

Herschel, De Morgan, Babbage, Gregory, and Boole- MTiat was

a somewhat heretical novelty when Peacock published his

Treatise on Algebra in 1830 is to-day a commonplace in any

competently written school book. Once and for all Peacock

broke away from the superstitition that the ic, i/, z, . , . in such

relations as x -r y ^ y xy = yx, x{y -{- z) = ast/ -f rcz, and

so on, as we find them in elementary algebra, necessarily

‘represent numbers’ ;
they do not, and that is one of the most

important things about algebra and the source of its power in

applications. The a;, i/, z, ... are merely arbitrary marks, com-

bined according to certain operations, one of which is symbo-

lized as -hj another by x (or simply as xy instead of x x y),

in accordance with postulates laid down at the beginning, like

the specimens x -j- y = y -i- x, etc,, above.

Without this realization that algebra is of itself nothing more

than an abstract system, algebra might still have been stuck

fiast in the arithmetical mud of the eighteenth centxuy, unable

to move forward to its modem and extremely useful variants

under the direction of Hamilton. We need only note here that

this renovation of algebra gave Boole his first opportunity to do

fine work appreciated by his contemporaries. Striking out on

his own initiative he separated the symbols of mathematical

operations from the things upon which they operate and pro-

ceeded to investigate these operations on their own account.

How did they combine? Were they too subject to some sort of

symbolic algebra? He found that they were. His work in this

direction is extremely interesting, but it is overshadowed by
the contribution which is peculiarly his own, the creation of a

isimple, workable system of symbolic or mathematical logic.

To introduce Boole's splendid invention properly we must

digress slightly and recall a famous row of the first half of the

nineteenth century, which raised a devil of a din in its own day

but which is now almost forgotten except by historians of

pathological philosophy. We mentioned Hamilton a moment
ago. There were two Hamiltons of public fame at this time, one

the Irish mathematician Sir William Rowan Hamilton (1805-

65), the other the Scotch philosopher Sir William Hamilton
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(1788-1856). Mathematicians usually refer to the philosopher

as the other Hamilton. After a somewhat unsuccessful career as

a Scotch barrister and candidate for official university positions

the eloquent philosopher finally became Professor of Logic and

Metaphysics in the University of Edinburgh. The mathematical

Hamilton, as we have seen, was one of the outstanding original

mathematicians of the nineteenth century. This is perhaps

unfortunate for the other Hamilton, as the latter had no earthly

use for mathematics, and hasty readers sometimes confuse the

two famous Sir Williams. This causes the other one to turn and

shiver in his grave.

Now, if there is anything more obtuse mathematically than a

thick-headed Scotch metaphysician it is probably a mathema-

tically thicker-headed German metaphysician. To surpass the

ludicrous absiudity of some of the things the Scotch Hamilton

said about mathematics we have to turn to what Hegel said

about astronomy or Lotze about non-Euclidean geometry.

Any depraved reader who wishes to fuddle himself can easily

run down all he needs. It was the metaphysician Hamilton’s

misfortune to have been too dense or too lazy to get more than

the most trivial smattering of elementary mathematics at

school, but ‘omniscience was his foible’, and when he began

lecturing and writing on philosophy, he felt constrained to tell

the world exactly how worthless mathematics is.

Hamilton’s attack on mathematics is probably the most

famous of all the many savage assaults mathematics has sur-

vived, undented. Less than ten years ago lengthy extracts from

Hamilton’s diatribe were vigorously applauded when a pedago-

gical enthusiast retailed them at a largely attended meeting of

America’s National Educational Association. Instead of

applauding, the auditors might have got more out of the

exhibition if they had paused to swallow some of Hamilton’s

philosophy as a sort of compulsory sauce for the proper enjoy-

ment of his mathematical herring. To be fair to him we shall

pass on a few of his hottest shots and let the reader make what
use of them he pleases.

‘Mathematics [Hamilton always used ‘mathematics’ as a

plural, not a smgular, as customary to-day] freeze and parch
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the mind*; 'an excessive study of mathematics absolutely inca-

pacitates the mind for those intellectual energies which philo-

sophy and life require*; ‘mathematics can not conduce to

logical habits at all’; ‘in mathematics dullness is thus elevated

into talent, and talent degraded into incapacity*
; ‘mathematies

may distort, but can never rectify, the mind’.

This is only a handful of the birdshot; we have not room for

the camion balls. The whole attack is most impressive - for a

man who knew far less mathematics than any intelligent child

of ten knows. One last shot deserves special mention, as it

introduces the figure of mathematical importance in the whole

wordy war, De Morgan (180^71), one of the most expert

controversialists who ever lived, a mathematician of vigorous

independence, a great logician who prepared the way for Boole,

the remorselessly good-humoured enemy of all cranks, char-

latans, and humbugs, and finally father of the famous novelist

(Alice foT Shorty etc.). Hamilton remarks, ‘This [a perfectly

nonsensical reason that need not be repeated] is why Mr De

Morgan among other mathematicians so often argues right.

Still, had Mr De Morgan been less of a Mathematician, he might

have been more of a Philosopher; and be it remembered, that

mathematics and dram-drinking tell especially, in the long run.’

Although the esoteric pimctuation is obscure the meaning is

clear enough. But it was not De Morgan who was given to

tippling.

De Morgan, having gained some fame from his pioneering

studies in logic, allowed himself in an absent-minded moment
to be trapped into a controversy with Hamilton over the

latter's famous principle of ‘the quantification ofthe predicate.’

There is no need to explain what this mystery is (or was); it is as

dead as a coffin nail, De Morgan had made a real contribution to

the syllogism; Hamilton thought he detected De Morgan’s

diamond in Ms own blue mud; the irate Scottish lawyer-philo-

sopher publicly accused De Morgan of plagiarism - an insanely

imphilosophieal thing to do - and the fight was on. On De
Morgan’s side, at least, the row was a hilarious frolic. De
Morgan never lost his temper; Hamilton had never learned to

keep his.
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If this were merely one of the innumerable squabbles over

priority which disfigure scientific history it would not be worth

a passing mention. Its historical importance is that Boole by

now (1848) was a firm friend and warm admirer of De Morgan.

Boole was still teaching school, but he knewmany ofthe leading

British mathematicians personally or by correspondence. He
now came to the aid of his friend - not that the witty De
Morgan needed any mortal’s aid, but because he knew that De

Morgan was right and Hamilton wrong. So, in 1848, Boole

published a slim volume, The Mathematical Analysis of Logic,

his first public contribution to the vast subject which his work

inaugurated and in which he was to win enduring fame for the

boldness and perspicacity of his vision. The pamphlet ~ it was

hardly more than that - excited De Morgan’s warm admiration.

Here was the master, and De Morgan hastened to recognize

him. The booklet was only the promise of greater things to come

six years later, but Boole had definitely broken new, stubborn

ground.

In the meantime, reluctantly turning down his mathematical

friends’ advice that he proceed to Cambridge and take the

orthodox mathematical training there, Boole went on with the

drudgery of elementary teaching, without a complaint, because

his parents were now wholly dependent upon his support. At

last he got an opportunity where his conspicuous abilities as an

investigator and a lecturer could have some play. He was

appointed Professor of hlathematics at the recently opened

Queen’s College at what was then called the city of Cork,

Ireland. This was in 1849.

Needless to say, the brilliant man who had known only

poverty and hard work all his life made excellent use of his

comparative freedom from financial worry and everlasting

grind. His duties would now be considered onerous; Boole found

them light by contrast with the dreary round of elementary

teaching to which he had been accustomed. He produced much
notable miscellaneous mathematical work, hut his main effort

went on licking his masterpiece into shape. In 1854 he pub-

lished it: An Inoestigation of the Laws of Thought, on tohich are

founded the Mathematical Theories of Logic and Probabilities^
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Boole was thirty-nine when this appeared. It is somewhat

unusual for a mathematician as old as that to produce work of

such profound originality, but the phenomenon is accounted

for when we remember the long, devious path Boole was com-

pelled to follow before he could set his face fairly toward his

goal. (Compare the careers of Boole and Weierstrass.)

A few extracts will give some idea of Boole’s style and the

scope of his work.

‘The design of the following treatise is to investigate the

fundamental laws of those operations of the mind by which

reasoning is performed; to give expression to them in the lan-

guage of a Calculus, and upon this foundation to establish the

science of Logic and construct its method; to make that method

itself the basis of a general method for the application of the

mathematical doctrine of probabilities; and, finally, to collect

from the various elements oftruth brought to view in the course

of these inquiries some probable intimations concerning the

nature and constitution of the human mind. .

.

‘Shall we then err in regarding that as the true science of

Logic which, lajing down certain elementary laws, confirmed

by the very testimony of the mind, permits us thence to deduce,

by uniform processes, the entire chain of its secondary conse-

quences, and furnishes, for its practical applications, methods

of perfect generality?

‘There exist, indeed, certain general principles founded in the

very nature of language, by which the use of symbols, which are

but the elements of scientific language, is determined. To a

certain extent these elements are arbitrary. Their interpretation

is purely conventional: we are permitted to employ them in

whatever sense we please. But this permission is limited by two

indispensable conditions, - first, that from the sense once con-

\’'entionally established we never, in the same process of reason-

ing, depart; secondly, that the laws by which the process is

conducted he founded exclusively upon the above fixed sense

or meaning of the symbols employed. In accordance with these

principles, any agreement which may be established between

the laws of the symbols of Logic and those of Algebra can but

issue in an agreement of processes. The two pTO\’inces of inter-
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pretation remain apart and independent, each, subject to its

own laws and conditions.

'Now the actual investigations of the following pages exhibit

Logic, in its practical aspect, as a system of processes carried on

by the aid of sjTnbols ha\ing a definite interpretation, and

subject to laws founded upon that interpretation alone. But at

the same time they exhibit those laws as identical in form with

the laws of the general symbols of Algebra, with this single

addition, viz., that the symbols of Logic are further subject to a

special law [x- = x in the algebra of logic, which can be inter-

preted, among other ways, as ‘"the class of all those things

common to a class x and itseK is merely the class a;'*], to which

the symbols of quantity, as such, are not subject.’ (That is, in

common algebra, it is not true that every x is equal to its square,

whereas in the Boolean algebra of logic, this is true.)

This programme is carried out in detail in the book. Boole

reduced logic to an extremely easy and simple type of algebra,

"Reasoning" upon appropriate material becomes in this algebra

a matter of elementary manipulations of formulae far simpler

than most of those handled in a second year of school algebra.

Thus logic itself was brought under the sway of mathematics.

Since Boole’s pioneering work his great invention has been

modified, improved, generalized, and extended in many direc-

tions. To-day symbolic or mathematical logic is indispensable

in any serious attempt to understand the nature ofmathematics

and the state of its foundations on which the whole colossal

superstructure rests. The intricacy and delicacy of the diffi-

culties explored by the symbolic reasoning would, it is safe to

say, defy human reason if only the old, pre-Boole methods of

verbal logical arguments were at our disposal. The daring origin-

ality of Boole’s whole project needs no signpost. It is a land-

mark in itself.

Since 1899, when Hilbert published his classic on the founda-

tions of geometry, much attention has been given to the postu-

lationaJ formulation of the several branches of mathematics.

This movement goes back as far as Euclid, but for some strange

reason - possibly because the techniques invented by Des-

cartes, Newton, Leibniz, Euler, Gauss, and others gave mathe-
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matidans plenty" to do in developing their subject freely and

somcTThat uncritically - the Euclidean method was for long

neglected in ever\’thing but geometry. We have already seen

that the British school applied the method to algebra in the

first half of the nineteenth century. Their successes seem to have

made no verj^ great impression on the work of their contem-

poraries and immediate successors, and it was only with the

work of Hilbert that the postulational method came to be

recognized as the clearest and most rigorous approach to any

mathematical discipline.

To-day this tendency to abstraction, in which the symbols

and rules of operation in a particular subject are emptied of all

meaning and discussed from a purely formal point of view, is

all the rage, rather to the neglect of applications (practical or

mathematical) which some say are the ultimate human justifi-

cation for any scientific activity. Nevertheless the abstract

method does give insights which looser attacks do not, and in

particular the true simplicity of Boole’s algebra of logic is most

easQy seen thus.

Accordingly we shall state the postulates for Boolean algebra

(the algebra of logic) and, having done so, see that they can

indeed be given an interpretation consistent with classical logic.

The following set of postulates is taken from a paper by E. V.

Huntington, in the Transactions of the American Mathematical

Society (vol. 85, 1933, pp. 274-304). The whole paper is easily

understandable by anyone who has had a week of algebra, and

may he found in most large public libraries. As Huntington

points out, this first set of his which we transcribe is not as

elegant some of his others. But as its interpretation in terms

of class inclusion as in formal logic is more immediate than the

like for the others, it is to be preferred here.

The set of postulates is expressed in terms of -EC, + , X , where

K is a class of undefined (wholly arbitrary, without any-

assigned meaning or propertiesbeyond those given in the postu-

lates) elements a, 6, c, ... , and a + b and a x b (written also

simply as ab) are the results of two undefined binary operations,

-f , X (‘binary’, because each of -f , x operates on feeo elements

of K). There are ten postulates, I a-VI:
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‘I a. If a ctnd b are in the class K, then a bis in the class Kn

‘I b. If a and b are in the class K, then ab is in the class K,

‘II a. There is an element Z such that a + Z = a for ecery

element a,

‘II b. There is an element TJ such that all — a for every

element a.

‘Ill a. a -r 6 = 6 -f a.

‘Ill b. ab = ba.

'lY a. a -T be = (a -T h) (a c).

‘I\" b. a{b -f c) = a& + ac.

‘V. For every element a there is an element a' such that a a'

= U and aa' — Z,

‘\"I. There are at least hjco distinct elements in the class X.’

It 'Will be readily seen that these postulates are satisfied by

the following interpretation: a, b, c, . are classes; a 4- 5 is the

class of all those things that are in at least one of the dasses,

a, b; ab is the class of all those things that are in both of the

classes a, &; Z is the ‘null class’ - the class that has no members;

r is the ‘universal class’ - the class that contains all the things

in all the classes under discussion. Postulate V then states that

given any class a, there is a class a' consisting of all those things

which are not in a. Note that VI implies that Z7j Z are not the

same class.

From such a simple and obvious set of statements it seems

rather remarkable that the whole of classical logic can be built

up symbolically by means of the easy algebra generated by the

postulates. From these postulates a theory of what may be

called ‘logical equations’ is developed: problems in logic are

translated into such equations, which are then ‘solved’ by the

devices of the algebra; the solution is then reinterpreted in

terms of the logical data, giving the solution of the original

problem. We shall close this description with the symbolic

equivalent of ‘inclusion’ - also interpretable, when propositions

rather than classes are the elements of as ‘implication’.

‘T^e relation a <h [read, a is included in b] is defined by any

one of thefollowing equations

a + b = b, ab = a, a' -r b — U, ab' Z.’
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To see that these are reasonable, consider for example the

second, ab = a. This states that if a is included in b, then every-

thing that is in both a and b is the whole of a.

From the stated postulates the following theorems on inclu-

sion (with thousands of more complicated ones, if desired) can

be prored. The specimens selected all agree with our intuitive

conception of what ^inclusion’ means.

(1) a < a,

(2) If a <b and b < c, then a < c.

(3) If a <h and b < a, then a = b.

(4i) Z < a {yohere Z is the element tn II a - it is proved to be

the only element satisfying II a).

(5) a < U {xhere U is the element in II b ~ likewise unique),

(6) a < a + b; and if a <y and b <y, then a b <y.

(7) ab < a; and ifx<a and x <b, then x < ab.

(8) Ifx<a and x < a% then ai = Z; andif a <y and a' < y,

then y = U.

(9) If a < b' is false^ then there is at least one element as,

distinctfrom Z, such that x < a and x <h.
It may be of interest to observe that ‘ <’ in arithmetic and

analysis is the symbol for Tess than’. Note that if a, b, c, ... are

real numbers, and Z denotes zero, then (2) is satisfied for this

interpretation of and similarly for (4), provided a is posi-

tive; but that (1) is not satisfied, nor is tlie second part of (6)
-

as we see from 5 < 10, 7 < 10, but 5 4-7 < 10 is false.

The tremendous power and fluent ease of the method can be

readily appreciated by seeing what it does in any work on

symbolic logic. But, as already emphasized, the importance of

this ‘symbolic reasoning’ is in its applicability to subtle ques-

tions regarding the foundations of all mathematics which, were

it not for this precise method of fixing meanings of ‘words’ or

other ‘symbols’ once for all, would probably be unapproachable

by ordinary mortals.

like nearly all novelties, symbolic logic was neglected for

many years after its invention. As late as 1910 we find eminent

mathematicians scorning it as a ‘philosophical’ curiosity with-

out mathematical significance. The work of 'VMiitehead and
Russell in Principia Mathemaiica (1910-13) was the first to
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convince any considerable body of professional mathematicians

that symbolic logic might be worth their serious attention. One

staunch hater of s^mabolic logic may be mentioned - Cantor,

whose work on the infinite will be noticed in the concluding

chapter. By one of those little ironies which make mathematical

history such amusing reading for the open-minded, symbolic

logic was to play an important part in the drastic criticism of

Cantor’s work that caused its author to lose faith in himself and

his theor\’.

Boole did not long survive the production of his masterpiece.

The year after its publication, still subconsciously striding for

the social respectability that he once thought a knowledge of

Greek could confer, he married Mary Everest, niece of the Pro-

fessor of Greek in Queen’s College. His wife became his devoted

disciple. After her husband's death, Mary Boole applied some

of the ideas which she had acquired from him to rationalizing

and humanizing the education ofyoung children. In her pamph-

let, Boole's Psychology, Mary Boole records an interesting

speculation of Boole's which readers of The Laws of Thought

will recognize as in keeping with the unexpressed but implied

personal philosophy in certain sections. Boole told his wife that

in 1S32, when he was about seventeen, it ‘flashed upon’ hini as

he was walking across a field that besides the knowledge gained

from direct observation, man derives knowledge from some

source undefinable and infusible - which Mary Boole calls ‘the

unconscious’. It will be interesting (in a later chapter) to hear

Poincare expressing a similar opinion regarding the genesis of

mathematical ‘inspirations’ in the ‘subconscious mind’. Any-

how, Boole was inspired, if ever a mortal was, when he wrote

The Laws of Thought.

Boole died, honoured and with a fast-growing fame, on

8 December 1864, in the fiftieth year of his age. His premature

death was due to pneumonia contracted after faithfully keeping

a lecture engagement when he was soaked to the skin. He fully

realized that he had done great work.



CHAPTER TWENTY-FOUR

THE MAX, XOT THE METHOD

Eerm tie

Outstanding unsolved problems demand new methods for

their solution, while powerful new methods beget new problems

to be solved. But, as Poincare observed, it is the man, not the

method, that solves a problem.

Of old problems responsible for new methods in mathematics

that of motion and all it implies for mechanics, terrestrial and

celestial, may be recalled as one of the principal instigators of

the calculus and present attempts to put reasoning about the

infinite on a firm basis. An example of new problems suggested

by powerful new methods is the s^yarm which the tensor

calculus, popularized to geometers by its successes in relativity,

let loose in geometry’. And finally, as an illustration of Poin-

care's remark, it was Einstein, and not the method of tensors,

that solved the problem of giving a coherent mathematical

account of grayitation. All three theses are sustained in the life

of Charles Hermite, the leading French mathematician of the

second half of the nineteenth century - if we except Hermite’s

pupil Poincare, who belonged partly to our own century.

Charles Hemiite, born at Dieuze, Lorraine, France, on 24

December 1822 could hardly have chosen a more propitious era

for his birth than the third decade of the nineteenth eentuiv'.

His W’as just the rare combination of creative genius and the

ability to master the best in the work of other men which was
demanded in the middle of the century to co-ordinate the

arithmetical creations of Gauss with the discoveries of Abel and
Jacobi in elliptic functions, the striking ady’ances of Jacobi in

Abelian functions, and the y^ast theory of algebraic iny^aiiants

in process of rapid dey^elopment by the English mathematicians

Boole, Cayley, and Sylvester.
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Hermite almost lost his life in the French Revolution -

although the last head had fallen nearly a quarter of a century

before he was born. His paternal grandfather was ruined by the

Commune and died in prison; his grandfather’s brother went to

the guillotine. Hermite’s father escaped owing to his youth.

If Hermite’s mathematical ability was inherited, it probably

came from the side of the father, who had studied engineering.

Finding engineering uncongenial, Hermite senior gave it up,

and after an equally distasteful start in the salt industry, finally

settled down in business as a cloth merchant. This resting place

was no doubt chosen by the rolling stone because he had mar-

ried his employer’s daughter, Madeleine Lallemand, a domi-

neering woman who wore the breeches in her family and ran

everj’thing from the business to her husband. She succeeded in

building both up to a state of solid bourgeois prosperity.

Charles was the sixth of seven children - five sons and two

daughters. He was bom with a deformity of the right leg which

rendered him lame for life - possibly a disguised blessing, as it

effectively barredhim from any career even remotely connected

with the army - and he had to get about with a cane. His defor-

mity never affected the uniform sweetness of his disposition.

Hermite’s earliest education was received from his parents.

As the business continued to prosper, the family moved from

Dieuze to Nancy when Hermite was six. Presently the growing

demands of the business absorbed all the time of the parents

and Hermite was sent as a boarder to the hjcee at Nancy. This

school pro^-ing unsatisfactory the prosperous parents decided

to give Charles the best and packed him off to Paris. There he

studied for a short time at the Lycee Henri IV, moving on at

the age of eighteen (1840) to the more famous (or infamous)

Louis-le-Grand - the ‘Alma’ Mater of the wretched Galois - to

prepare for the Polytechnique.

For a while it looked as if Hermite was to repeat the disaster

of his untamable predecessor at Louis-le-Grand. He had the

same dislike for rhetoric and the same indifference to the ele-

mentary mathematics of the classroom. But the competent

lectures on physics fascinated him andwon his cordial co-opera-

tion in the bilateral process ofacquiring an education. Later on,
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Tinpestered by pedants, Hermite became a good classicist and

the master of a beautiful clear prose.

Those who hate examinations will love Hermite. There is

pomethiog in the careers of these two most famous alumni of

Louis-Ie-Grand, Galois and Hermite. which might well cause the

advocates of examinations as a reliable yardstick for arranging

human beings in order of intellectual merit to ask themselves

whether they have used their heads or their feet in arriving at

their conclusions. It was only by the grace of God and the diplo-

matic persistence of the devoted and intelligent Professor

Richard, who had done his unavailing best fifteen years before

to save Galois for science, that Hermite was not tossed out by

stupid examiners to rot on the rubbish heap of failure. 'While

stni a student at the Hermite, following in the steps of

Galois, supplemented and neglected his elementary lessons by

private reading at the library of Sainte-Genevieve, where he

found and mastered the memoir of Lagrange on the solution of

numerical equations. Sa\’ing up his pennies, he bought the

French translation of the Bisquisiiiones Ariihmeticae of Gauss

and, what is more, mastered it as few before or since have

ma^ered it. B3" the time he had followed what Gauss had done

Hermite was readjr to go on* Tt was in these two books’, he

loved to ssiy in later life, “that I learned Algebra.’ Euler and

Laplace also instructed him through their works. And yet

Hermite’s performance in examinations was, to sajr the most

fiattering thing possible of it, mediocre. Mathematical nonen-

tities beat him out of sight.

IVIindful of the tragic end of Galois, Richard tried his best to

steer Hermite away from original investigation to the less

exciting though muddier waters of the competitive examina-

tions for entrance to the ficole PoMechnique - the fdthy ditch

in which Galois had drowned himself. Nevertheless the good

Richard could not refrain from telling Hermite’s father that

Charles was ‘a young Lagrange’.

The Nouvelles Annates de Mathematiqnes. a journal devoted

to the interests of students in the higher schools, was founded
in 1842. The first volume contains two papers composed by
Hermite while he was still a student at Louis-le-Grand. The
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first is a simple exercise in the anal3i;ic geometry of conic

sections and betrays no originality. The second, which fills only

six and a half pages in Hermite’s collected works, is a horse of

quite a different colour. Its unassuming title is Considerations

on the algebraic solution of the equation of the fifth degree (trans-

lation).

‘It is known’, the modest mathematician of twenty begins,

‘that Lagrange made the algebraic solution of the general equa-

tion of the fifth degree depend on the determination of a root

of a particular equation of the sixth degree, which he calls a

reduced equation [to-day, a “resolvent”] So that, if this

resolvent were decomposable into rational factors of the

second or third degrees, we should have the solution of the

equation of the fifth degree. I shall try to show that such a

decomposition is impossible.’ Hermite not only succeeded in

his attempt - by a beautifully simple argument - but showed

also in doing so that he was an a^ebraist. Mlth but a few slight

changes this short paper will do all that is required.

It may seem strange that a young man capable of genuine

mathematical reasoning of the calibre shown by Hermite in his

paper on the general quintic should find elementary mathe-

matics difficult. But it is not necessary to understand - or even

to have heard of - much of classical mathematics as it has

evolved in the course of its long history in order to be able to

follow or work creatively in the mathematics that has been

developed since 1800 and is stfll of li^dng interest to mathe-

maticians. The geometrical treatment (synthetic) of conic sec-

tions of the Greeks, for instance, need not be mastered to-day

by anyone who wishes to follow modem geometry; nor need

any geometry at all be learned by one whose tastes are alge-

braic or arithmetical. To a lesser degree the same is true for

analysis, where such geometrical language as is used is of the

simplest and is neither necessary nor desirable if up-to-date

proofs are the object. As a last example, descriptive geometry,

of great use to designing engineers, is of practically no use

whatever to a working mathematician. Some quite difficult

subjects that are still mathematically alive require only a school

education in algebra and a clear head for their comprehension.
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Such are the theorj' of finite groups, the mathematical theory

of the infinite, and parts of the theory of probabilities and the

higher arithmetic. So it is not astonishing that large tracts of

what a candidate is required to know for entrance to a technical

or scientific school, or even for graduation from the same, are

less than worthless for a mathematical career. This accounts

for Hermite's spectacular success as a budding mathematician

and his narrow escape from complete disaster as an examinee.

Late in 1842, at the age of twenty, Hermite sat for the en-

trance examinations to the ficole Polji:echnique. He passed,

but only as sixty-eighth in order of merit. Already he was a

vastly better mathematician than some of the men who
examined him were, or were ever to become. The humiliating

outcome of this test made an impression on the young master

which all the triumphs of his manhood never effaced.

Hermite stayed only one year at the Polytechnique. It was
not his head that disqualified him but his lame foot which,

according to a ruling of the authorities, imfitted him for any of

the positions open to successful students of the school. Perhaps

it is as well that Hermite was thrown out; he was an ardent

patriot and might easily have been embroiled in one or other

of the political or military" rows so precious to the efferv'escent

French temperament. How’ever, the year was by no means
wasted. Instead of sla\’ing over descriptive geometry, which
he hated, Hermite spent his time on Abelian functions, then

(1842) perhaps the topic of outstanding interest and importance
to the great mathematicians of Europe. He had also made the

acquaintance of Joseph Liomdlle (1809-82), a first-class

mathematician and editor of the Journal des Maihemaiiques,

Liouvilie recognized genius when he saw it. In passing it may
be amusing to recall that Liomdlle inspired William Thomson,
Lord Kel\4n, the famous Scotch physicist, to one of the most
satisfying definitions of a mathematician that has ever been
given, ‘Do you know what a mathematician is?’ Kelvin once

asked a class. He stepped to the board and wrote

e^-dx = V TT,

Putting his finger on what he had written, he turned to the
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class. ‘A mathematician is one to whom that is as obvious as that

twice two makes four is to 3^ou- liouviHe was a mathematician.’

Young Hermite’s pioneering work in Abelian functions, well

begun before he was twenty-one, was as far beyond Kehnn's

example in imob\nousness as the example is beyond ‘twice two

makes four.’ Remembering the cordial welcome the aged

Legendre had accorded the revolutionary work of the young

and unknown Jacobi, Liouville guessed that Jacobi would show

a similar generosity to the beginning Hermite. He was not

mistaken.

The first of Hermite’s astonishing letters to Jacobi is dated

from Paris, January” 1843. ‘The study of your [Jacobi’s] memoir

on quadruple periodic functions arising in the theory of Abelian

functions has led me to a theorem, for the di\dsion of the argu-

ments [variables] of these functions, analogous to that which

you gave ... to obtain the simplest expression for the roots of

the equations treated by Abel. M. Liouville induced me to

write to you, to submit this work to you; dare I hope, Six, that

you win be pleased to welcome it with all the indulgence it

needs?’ With that he plunges at once into the mathematics.

To recall briefly the bare nature of the problem in question:

the trigonometric functions are functions of one variable with

one period, thus sin (x + 2tt) = sin x, where x is the variable

and 27r is the period; Abel and Jacobi, by ‘inverting’ the elliptic

integrals, had discovered functions of one variable and feoo

periods, say/(a? + p -f 5) = where p, q are the periods (see

Qiapters 12, 18); Jacobi had discovered functions of two

variables and four periods, say

F{x -{ a b^y + c d) = F{x,y),

where afiyC^d are the periods. A problem early encountered in

trigonometry is to express ^n or sin or generally sin

where n is any given integer, ifi terms of sin x (and

possibly other trigonometric functions of x). The correspond-

ing problem for the functions of two variables and four periods

was that which Hermite attacked. In the trigonometric pro-
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blem vre are finally led to quite simple equations; in Hennite's

incomparably more difficult problem the upshot is again an

equation (of degree n*), and the unexpected thing about this

equation is that it can be solved algebraically, that is, by
radicals.

Barred from the Polytechnique by his lameness, Hermite

now cast longing eyes on the teaching profession as a haven

where he might earn his li\ing while advancing his beloved

mathematics. The career should have been flung wide open to

him, degree or no degree, but the inexorable rules and regula-

tions made no exceptions. Red tape always hangs the wrong

man, and it nearly strangled Hermite.

Unable to break himself of his *pemicious originality’, Her-

mite continued his researches to the last possible moment when,

at the age of twenty-four, he abandoned the fundamental dis-

coveries he was making to master the trivialities required for

his first degrees (bachelor of letters and science). Two harder

ordeals would normally have followed the first before the

young mathematical genius could be certified as fit to teach, but

fortunately Hermite escaped the last and worst when influential

friends got him appointed to a position where he could mock the

examiners. He passed his examinations (in 1847-8) very badly.

But for the friendliness of two of the inquisitors - Sturm and

Bertrand, both fine mathematicians who recognized a fellow

craftsman when they saw one - Hermite would probably not

have passed at aD. (Hermite married Bertrand’s sister Lomse in

1848.)

By an ironic twist of fate Hermite’s first academic success

was his appointment in 1848 as an examiner for admissions to

the very Pohdechnique which had almost failed to admit him.

A few months later he was appointed quiz master {repeiiteitr) at

the same institution. He was now securely established in a niche

where no examiner could get at him. But to reach this ‘bad

eminence’ he had sacrificed nearly five years of what almost

certainly was his most inventive period to propitiate the

stupidities of the official system,

Ha\’ing finally satisfied or evaded his rapacious examiners,

Hennite settled down to become a great mathematician. EBs
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life was peaceful and uneventful. In 1848 to 1850 he substituted

for Libri at the College de France. Six years later, at the early

age of thirty-four, he was elected to the Institut (as a member

of the Academy of Sciences). In spite of his world-wide reputa-

tion as a creative mathematician Hermite was forty-seven

before he obtained a suitable position: he was appointed pro-

fessor in 1869 at the fieole Normale and finally, in 1870, he

became professor at the Sorboime, a position which he held till

his retirement twenty-seven years later. During his tenure of

this influential position he trained a whole generation of distin-

guished French mathematicians, among whom Emile Picard,

Gaston Darboux, Paul Appell, ]£mile Borel, Paul Painleve and

Henri Poincare may be mentioned. But his influence extended

far beyond France, and his classic works helped to educate his

contemporaries in all lands.

A distinguishing feature of Hermite's beautiful work is closely^

allied to his repugnance to take advantage of his authoritative*

position to re-create all his pupils in his own image: this is the*

unstinted generosity which he invariably displays to his fellow

mathematicians. Probably no other mathematician of modern
times has carried on such a voluminous scientific correspon-

dence with workers all over Europe as Hermite, and the tone of

his letters is always kindly, encouraging, and appreciative.

Many a mathematician of the second half of the nineteenth

century owed his recognition to the publicity which Hermite
gave his first efforts. In this, as in other respects, there is no
finer character than Hermite in the whole history of mathe-

matics. Jacobi was as generous - with the one exception of his

early treatment of Eisenstein - but he had a tendency to sar-

casm (often highly amusing, except possibly to the unhappy
\ictim) which was wholly absent from Hermite’s general wit.

Such a man deserved the generous reply of Jacobi when the

unknown young mathematician ventured to approach him with

his first great work on Abelian functions. ‘Do not be put out,

Sir’, Jacobi wrote, ‘if some of your discoveries coincide with old

work ofmy own. As you must begin where I end, there is neces-

sarily a small sphere of contact. In future, if you honour me
with your cjojmnunications, I shall have only to learn.’
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Encouraged by Jacobi, Hermite shared with him not onlv the

discoveries in Abelian functions, but also sent him four tremen-

dous letters on the theory of numbers, the first early in 1847,

These letters, the first of which was composed when Hermite
was only twentj^-fom, break new ground (in what respect we
shall indicate presently) and are sufficient alone to establish

Hermite as a creative mathematician of the first rank. The
generality of the problems be attacked and the bold originaiitv

of the methods he demised for their solution assure Hermite’s

remembrance as one of the born arithmeticians of history.

The first letter opens with an apology. ‘Nearlytwo years have

elapsed without my answering the letter full of goodwill which

you did me the honour to write to me. To-day I shall beg you to

pardon my long negligence and es^press to you all the joy I felt

in seeing myself given a place in the repertory of your works.

[Jacobi has published parts of Hermite’s letter, with all due

acknowledgement, in some work of his own.] Ha\dng been for

long away from the work, I was greatly touched by such an

attestation of yoxir kindness; allow me, Sir, to believe that it

will not desert me.’ Hermite then says that another research of

Jacobi's has inspired him to his present efforts.

If the reader will glance at what was said about uniform

functions of a single variable in the chapter on Gauss (a uniform

function takes onli/ one value for each value of the variable),

the following statement of what Jacobi had proved should be

intelligible: a uniform function of only one variable with three

distinct periods is impossible. That uniform functions of one

variable exist having either one period or two periods is proved

by exhibiting the trigonometric functions and the elliptic func-

tions. This theorem of Jacobi’s, Hermite declares, gave him his

own idea for the novel methods which he introduced into the

higher arithmetic. Although these methods are too technical

for description here, the spirit of one of them can be briefly

indicated.

Arithmetic in the sense of Gauss deals with properties of the

rational integers 1,2,3, . . . ; irrationals (like the square root of

2) are excluded. In particular Gauss investigated the integer

solutions of large classes of indeterminate equations in two or
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three unkno-wTis, for example as in axr + 2hxy -j-

where a,b,c,m are any given integers and it is required to discuss

all integer solutions aj, y of the equation. The point to be noted

here is that the problem is stated and is to be solved entirely in

the domain of the rational integers, that is, in the realm of

discrete number. To fit analysis, which is adapted to the investi-

gation of continuous number, to such a discrete problem would

seem to be an impossibility, yet this is what Hermite did.

Starting with a discrete formulation, he applied analysis to the

problem, and in the end came out with results in the discrete

domain from which he had started. As analysis is far more

highly developed than any of the discrete techniques invented

for algebra and arithmetic, Hermite’s advance was comparable

to the introduction of modem machinery into a medieval

handicraft.

Hermite had at his disposal much more powerful machinery,

both algebraic and analytic, than any available to Gauss when

he wrote the Disquisitiones Arithmeticae. With Hermite’s own
great invention these more modem tools enabled him to attack

problems which would have baffled Gauss in 1800. At one stride

Hermite caught up with general problems of the type which

Gauss and Eisenstein had discussed, and he at least b^an the

arithmetical study of quadratic forms in any number of un-

knowns. The general nature of the arithmetical ‘theory of

forms’ can be seen from the statement of a special problem.

Instead of the Gaussian equation ax^ -{- 2hoDy -j- = m of

degree two in tmo unknowns {x, y), it is required to discuss the

integer solutions of similar equations of degree n in s imloiowns,

where n, s are any integers, and the degree of each term on the

left of the equation is n (not 2 as in Gauss’ equation). After

stating how he had seen after much thought that Jacobi’s

researches on the periodicity of uniform fimctions depend upon

deeper questions in the theory of quadratic forms, Hermite out-

lines his programmes.

‘But, having once arrived at this point of view, the problems

- vast enough — which I had thought to propose to myself,

seemed inconsiderable beside the great questions of the general

theory of forms. In this boundless espanse of researches which
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Monsieur Gauss [Gauss was still living when Hermite wrote this,

hence the polite ‘Monsieur’] has opened up to us, Algebra and

the Theory of Xumbers seem necessarily to be merged in the

same order of analytical concepts, of which our present know-
ledge does not yet permit us to form an accurate idea.’

He then makes a remark which, although not very clear, can

be interpreted as meaning that the key to the subtle connexions

between algebra, the higher arithmetic, and certain parts of the

theory’ of functions will be found in a thorough understanding

of what sort of ‘numbers’ are both necessary and sufficient for

the explicit solution of all types of algebraic equations. Thus,

for — 1 = 0, it is necessary and sufficient to understand

1 ; for a® -}- oa; + & = 0, where afi are any given numbers,

what sort of a ‘number’ x must be invented in order that x may
be expressed explicitly in terms of Gauss of course gave one

kind of answer: any root aj is a complex number. But this is only

a beginning. Abel proved that if only 2l finite number of rational

operations and extractions of roots are permitted, then there is

no explicit formula giving x in terms of a,&. We shall return to

this question later; Hermite even at this early date (184j8 ; he

was then twenty-six) seems' to have had one of his greatest

discoveries somewhere at the back of his head.

In his attitude toward numbers Hermite was somewhat of a

mystic in the tradition of Pythagoras and Descartes - the

latter’s mathematical creed, as will appear in a moment, was
essentially P5i:hagorean. In other matters, too, the gentle

Hermite exhibited a marked leaning toward mysticism. Up to

the age of forty-three he was a tolerant agnostic, like so many
Frenchmen of science ofhis time. Then, in 1856, he fell suddenly

and dangerously ill. In this debilitated condition he was no
match for even the least persistent evangelist, and the ardent

Cauchy, who had always deplored his brilliant young friend's

open-mindedness on religious matters, pounced on the prostrate

Hermite and converted him to Homan Catholicism. Thence-

forth Hermite was a devout Catholic, and the practice of his

religion gave him much satisfaction.

Hermite’s number-mysticism is harmless enough and it is one
of those personal things on which argument is futfle. Briefly,
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Hermite beKeved that numbers have an existence of their own
above all control by human beings* Mathematicians, he
thought, are permitted now and then to catch glimpses of the

superhuman harmonies regulating this ethereal realm of numer-
ical existence, just as the great geniuses of ethics and morals
have sometimes claimed to have visioned the celestial perfec-

tions of the Kingdom of Heaven.

It is probably right to say that no reputable mathematician
to-day who has paid any attention to what has been done in the
past fifty years (especially the last twenty-five) in attempting
to understand the nature of mathematics and the processes of
mathematical reasoning would agree with the mystical Her-
mite. "^Miether this modem scepticism regarding the other-

worldliness of mathematics is a gain or a loss over Hermite’s
creed must he left to the taste of the reader. Whot is now almost
universally held by competent judges to be the wrong \iew of

'mathematical existence’ was so admirably expressed by
Descartes in his theory of the eternal triangle that it may be
quoted here as an epitome of Hermite’s mystical beliefs.

‘I imagine a triangle, although perhaps such a figure does not
exist and never has existed anywhere in the world outside my
thought. Nevertheless this figure has a certain nature, or form,

or determinate essence which is immutable or eternal, which I

have not invented and which in no way depends on my Tnind.

This is evident from the fact that I can demonstrate various

properties of this triangle, for example that the sum of its three

interior angles is equal to two right angles, that the greatest

angle is opposite the greatest side, and so forth. \"^Tiether I

desire to or not, I recognize very clearly and convincingly that
these properties are in the triangle although I have never
thought about them before, and even if this is the first time I

have imagined a triangle. Nevertheless no one can say that I

have invented or imagined them.’ Transposed to such simple

‘eternal verities’ aslH-2 = 3, 2 + 2 = 4, Descartes’ everlast-

ing geometry becomes Hennite’s superhuman arithmetic.

One arithmetical investigation of Hennite’s, although rather

technical, may be mentioned here as an example of the pro-

phetic aspect ofpure mathematics. Gauss, we recall, introduced
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complex integers fniimbers of the form a — where a, b are

rational integers and i denotes V ~ 1) into the higher arith-

metic in order to give the law of biquadratic reciprocity-* its

simplest expression. Dirichlet and other followers of Gauss then

discussed quadratic forms in which the rational integers

appearing as variables and coefficients are replaced by Gaussian

complex integers. Hermite passed to the general case of this

situation and investigated the representation of integers in

what are to-day called Hermiiian forms. An example of such a

form (for the special case of two complex variables and

their ‘conjugates’ io instead of n variables) is

in which the bar over a letter denoting a complex number indi-

cates the conjugate of that number; namely, x iy is the

complex number, its ‘conjugate’ is a? — iy; and the coefficients

«u. «i 2 > ^22 are such that = ay,, for {i,j) = (1,1), (1,2),

(2,1), (2,2), so that flja ^21 conjugates, and each

Cgg is its own conjugate (so that Cgg are real numbers). It is

easily seen that the entire form is real (free of t) if aU products

are multiplied out, but it is most ‘naturally’ discussed in the

shape given.

When Hermite invented such forms he was interested in

finding what numbers are represented by the forms. Over

seventy years later it was found that the algebra of Hermitian

forms is indispensable in mathematical physics, particularly in

the modem quantum theory. Hermite had no idea that his pure

mathematics would prove valuable in science long after his

death — indeed, like Archimedes, he never seemed to care much
for the scientific applications of mathematics. But the fact that

Hermite’s work has given physics a useful tool is perhaps

another argument favouring the side that believes mathemati-

daxis best justify their abstract existence when left to their own
inscrutable devices.

Leaving aside Hermite’s splendid discoveries in the theory of

algebraic invariants as too technical for discussion here, we
^lallpassoninamomenttotwo ofhis most spectacular achieve-

ments in other fields. The high esteem in which Hermite’s
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TTork in invariants was heldbyhis contemporaries may, however,

be indicated by Sylvester’s characteristic remark that ‘Cayley,

Hermite, and I constitute an Invariantive Trinity.’ Who was

who in this astounding trinity Sylvester omitted to state; but

perhaps this oversight is immaterial, as each member of such a

trefoil would be capable of transforming himself into himself or

into either of his coinvariantive beings.

The two fields in which Hermite found what are perhaps the

most striking indi\ddual results in all his beautiful work are

those of the general equation of the fifth degree and transcen-

dental numbers. The nature of what he found in the first is

clearly indicated in the introduction to his short note Sur la

resolution de Vequation du cinquieme degre (On the Solution of

the [general] Equation of the Fifth Degree; published in the

Comptes rendiis de VAcademic des Sciences for 1858, when
Hermite was thirty-six).

‘It is known that the general equation of the fifth degree can

be reduced, by a substitution [on the unknown x] whose coeffi-

cients are determined without using any irrationalities other

than square roots or cube roots, to the form

£c® — a? — a = 0.

[That is, ifwe can solve this equation for then we can solve the

general equation of the fifth degree.]

‘This remarkable result, due to the English mathematician

Jerrard, is the most important step that has been taken in the

algebraic theory of equations of the fifth degree since Abel

proved that a solution by radicals is impossible. This impossi-

bility shows in fact the necessity for introducing some new
analytic element [some new kind of fxmction] in seeking the

solution, and, on this account, it seems natural to take as an

auxiliary the roots of the very simple equation we have just

mentioned. Nevertheless, in order to legitimize its use rigor-

ously as an essential element in the solution of the general equa-

tion, it remains to see if this simplicity of form actually permits

us to arrive at some idea of the nature of its roots, to grasp

what is peculiar and essential in the mode of existence of these

quantities, of which nothing is known beyond the fact that they

are not expressible by radicals.
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*Xow it is ven" remarkable that Jerrard’s equation lends it-

self with the greatest ease to this research, and is, in the sense

which we shall explain, susceptible of an actual analytic solu-

tion, For we may indeed conceive the question of the algebraic

solution of equations from a point of view different from that

which for long has been indicated by the solution of equations

of the first four degrees, and to which we are especially com-

mitted.

"Instead of expressing the closely interconnected system of

roots, considered as functions of the coefficients, by a formula

invoking many-valued radicals,* we may seek to obtain the

roots expressed separately by as many distinct uniform [one-

valued] functions of auxiliary variables, as in the case of the

third degree. In this case, where the equation

aj3 _ 3^; = 0

is under discussion, it suffices, as w'e know, to represent the

coefficient a by the sine of an angle, say A, in order that the

roots be isolated as the following well-determined functions

2 sm 2 sm -

3

. A -i- 4t7r

, 2 Sin
3 3

[Hermite is here recalling the familiar trigonometric solution’

of the cubic usually discussed in the second course of school

algebra. The ^auxiliary variable’ is A; the ‘uniform functions’

are here sines.]

‘Now it is an entirely similar fact which we have to exhibit

concerning the equation

a?® — a? — a = 0.

Only, instead of sines or cosines, it is the elliptic functions

which it is necessary to introduce. .

,

* For ex^pie, as in the simple quadratic — a = o : the roots are

3! ss 4- Vflj and x = — Va; the ‘many-valuedness’ of the radical

involved, here a square root, or irrationality of the second degree,

appears in the double sign, when we say briefly that the two roots

are Vn. The formula giving the ihree roots of cubic equations involves

the three-vahied irrationality *^^1, which has the three values X,

i( _ 1 4.v''=r8), _ 1 _ -vTTa).

508



THE MAN, NOT THE METHOD

In short order Hermite then proceeds to solve the general

equation of the fifth degree, xising for the purpose elliptic func-

tions (strictly, elliptic modular fimctions, but the distinction is

of no importance here). It is almost impossible to convey to a

non-mathematician the spectacular brilliance of such a feat; to

give a very inadequate simiLe, Hermite found the famous ‘lost

chord’ when no mortal had the slightest suspicion that such an

elusive thing existed anywhere in time and space. Needless to

say his totally unforeseen success created a sensation in the

mathematical world. Better, it inaugurated a new department

of algebra and analysis in which the grand problem is to dis-

cover and investigate those functions in terms of which the

general equation of the nth. degree can be solved explicitly in

finite form. The best result so far obtained is that of Hermite'

s

pupil, Poincar6 (in the ISSO's), who created the functions gi\Tng

the required solution. These turned out to be a ‘natural’

generalization of the elliptic functions. The characteristic of

those functions that was generalized was periodicity. Further

details would take us too far afield here, but if there is space

we shall recur to this point when we reach Poincare.

Hermite’s other sensational isolated result was that which

established the transcendence (explained in a moment) of the

number denoted in mathematical analysis by the letter c,

namely

where 1! means 1, 2! = 1 x 2, 3! = 1 x 2 x 3, 4! ==T X 2

X 3 X 4, and so on; this number is the -base’ of the so-called

‘natural’ system of logarithms, and is approximately

2*718281828 It has been said that it is impossible to con-

ceive of a universe in which e and (the ratio of the circum-

ference of a circle to its diameter) are lacking. However that

may be (as a matter of fact it is .false), it is a fact that e turns up
everywhere in current mathematics, pure and applied. Why
this should be so, at least so far as applied mathematics is con-

cerned, may be inferred from the following fact: e®, considered

as a function of a?, is the only function of aj whose rate of change
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T^ith respect to x is equal to tlie function itself - that is, e® is the

only function -^hich is equal to its derivative.*

The concept of ^transcendence’ is extremely simple, also

extremely important. Any root of an algebraic equation whose

eoeflficients are rational integers (0, . . .) is called an

algebraic number. Thus V — 1, 2*78 are algebraic numbers,

because they are roots of the respective algebraic equations

a:3 ^ 0, oOx — 139 = 0, in which the coefficients (1, 1 for

the first; 50, - 139 for the second) are rational integers. A
‘number’ which is not algebraic is called transcendental. Other-

wise expressed, a transcendental number is one which satisfies

no algebraic equation with rational integer coefficients.

Xow, given any ‘number’ constructed according to some

definite law, it is a meaningful question to ask whether it is

algebraic or transcendental. Consider, for example, the follow-

ing simply defined number,

To 102 ‘ io« ' Yo^i
‘ ‘ =

in which the exponents 2, 6, 24, 120, ... are the successive

‘factorials’, namely 2 = 1x2, 6 = lx2x3, 24=1x2x3
X 4, 120 = 1 X2x3x4x5, and the indicated series

continues ‘to infinity"’ according to the same law as that for the

terms given. The next term is ; the sum of the first three
10720

terms is *1 -j- -01 4- *000001, or -llOCOl, sind it can be proved

that the series does actually define some definite number which
is less than -12. Is this number a root of any algebraic equation

with rational integer coefficients? The answer is no, although to

prove this without having been shown how to go about it is a

severe test of high mathematical ability. On the other hand, the

number defined by the infinite series

1 1 1 . 1^ I _i_ I

10 ^^ 103 10^1 10^^

* Strictly, ce', where a does not depend upon a?, is the most general,

but the ‘multiplicative constant’ a is tri\dal here.
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is algebraic; it is the root of 99900 — 1 = 0 (as may be verified

by the reader who remembers how to sum an infinite convergent

geometrical progression).

The first to prove that certain numbers are transcendental

was Joseph Liouville (the same man who encouraged Hermite

to write to Jacobi) who, in 1844, discovered a very extensive

class of transcendental numbers, of which all those of the form

11 1 1^1
n n® ‘ ^^120 ’

where w is a real number greater than 1 (the example given

above corresponds to n = 10), are among the simplest. But it

is probably a much more difficult problem to prove that a

particular suspect, like e or w, is or is not transcendental than

it is to invent a whole infinite class of transcendentals: the

inventive mathematician dictates - to a certain extent — the

working conditions, while the suspected number is entire

master of the situation, and it is the mathematician in this case,

not the suspect, who takes orders which he only dimly under-

stands. So when Hermite proved in 1873 that e (defined a short

way back) is transcendental, the mathematical world was not

only delighted but astonished at the marvellous ingenuity of

the proof.

Since Heimite’s time many numbers (and classes of numbers)

have been proved transcendental. What is likely to remain a

high-water mark on the shores of this dark sea for some time

may be noted in passing. In 1934 the young Russian mathe-

matician Alexis Gelfond proved that all numbers of the type

where a is neither 0 nor 1 and b is any irraiional algebraic

number, axe transcendental. This disposes of the seventh of

David Hilbert’s list of twenty-three outstanding mathematical

problems which he called to the attention of mathematicians

at the Paris International Congress in 1900. Note that irra-

tional’ is necessary in the statement of Gelfond’s theorem (if

b — film, where n, m are rational integers, then a^, where a is

any algebraic number, is a root of = 0, and it can be

shown that this equation is eqmvalent to one in which all the

coefiScients are rational integers.
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Hermite’s unexpected ^dctory over the obstinate e inspired

mathematicians to hope that ^ Tvould presently be subdued in a

similar manner. For himself, however, Hemiite had had enough

of a good thing. ‘I shall risk nothing", he wrote to Borchardt, "on

an attempt to prove the transcendence of the number r. If

others undertake this enterprise, no one will be happier than I

at their success, but believe me, my dear friend, it will not fail

to cost them some efforts." Nine years later (in 1882) Ferdinand

Lindemann of the University of Munich, using methods veiy

similar to those which had sufficed Hermite to dispose of e,

proved that rr is transcendental, thus settling for ever the pro-

blem of ‘squaring the circle’. From what Lindemann proved it

follows that it is impossible with straight-edge and compass

alone to construct a square whose area is equal to that of any

given circle - a problem which had tormented generations of

mathematicians since before the time of Euclid,

As cranks are still tormented by the problem, it may be in

order to state concisely how Lindemann's proof settles the

matter. He proved that is not an algebraic number. But any

geometrical problem that is solvable by the aid of straight-edge

and compass alone, when restated in its equivalent algebraic

form, leads to one or more algebraic equations with rational

integer coefficients which can be solved by successive extrac-

tions of square roots. As satisfies no such equation, the circle

cannot be ‘squared’ with the implements named. If other

mechanical apparatus is permitted, it is easy to square the

circle. To all but mild lunatics the problem has been completely

^dead for over half a century. Nor is there any merit at the

present time in computing ir to a large number of decimal

places - more accuracy in this respect is already available than

is ever likely to be of use to the human race if it survives for a
billion to the billionth power years. Instead of trying to do the

impossible, mystics may like to contemplate the following

useful relation between e, tt, — 1 and V — 1 till it becomes
as plain to them as Buddha’s navel is to a blind Hindu
swami,
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Anyone who can perceive this mystery intuitively will not need

to square the circle.

Since Lindemann settled ct the one outstanding unsolved

problem that attracts amateurs is Fermat's ‘Last Theorem*.

Here an amateur with real genius undoubtedly has a chance.

Lest this be taken as an invitation to all and simdry to swamp

the editors of mathematical journals with attempted proofs,

recall what happened to Lindemaim when he boldly tackled the

famous theorem. If this does not suggest that more than ordi-

nary’ talent will be required to settle Fermat, nothing can. In

1901 Lindemann published a memoir of seventeen pages pur-

porting to contain the long-sought proof. The vitiating error

being pointed out, Lindemann, undaunted, spent the best part

of the next seven years in attempting to patch the unpatehable,

and in 1907 published sixty-three pages of alleged proofwhich

were rendered nonsensical by a slip in reasoning near the very

beginning.

Great as were Hermite’s contributions to the technical side of

mathematics, his steadfast adherence to the ideal that science

is beyond nations and above the power of creeds to dominate or

to stultify was perhaps an even more significant gift to civiliza-

tion ia the long 'view ofthings as they now appear to a harassed

humanity. "VYe can only look back on his serene beauty of spirit

with a poignant regret that its like is nowhere to be foimd in the

world of science to-day. Even when the arrogant Prussians

were htimiliating Paris in the Franco-Prussian war, Hennite,

patriot though he was, kept his head, and he saw clearly that

the mathematics of ihe enemy' was mathematics and nothing

else. To-day, even when a man of science does take the civilized

point of view, he is not impersonal about his supposed broad-

mindedness, hut aggressive, as befits a man on the defensive.

To Hennite it was so obvious that knowledge and wisdom are

not the prerogatives of any sect, any creed, or any nation that

he never bothered to put his instinctive sanity into words. In

respect of what Hermite knew by instinct our generation is

two centuries behind him. He died, loved the world over, on

14 January 1901.



CHAPTEB T'^VEXTY-PITE

THE DOUBTER

Kronecker

*

Professional mathematicians who could properly be called

business men are extremely rare. The one who most closely

approximates to this ideal is Kronecker (1823-91), who did so

well for himselfby the time he was thirty that thereafter he was

enabled to devote his superb talents to mathematics in consi-

derably greater comfort than most mathematicians can afford.

The obverse of Kronecker's career is to be found - according

to a tradition familiar to American mathematicians - in the

exploits of John Pierpont Morgan, founder of the banking

house ofMorgan and Company. If there is anything in this tra-

dition, Morgan as a student in Germany showed such extra-

ordinary mathematical ability that his professors tried to

induce him to follow mathematics as bis life work and even

offered him a university position in German^’’ which would have

sent him off to a fl\ing start. Morgan declined and dedicated his

gifts to finance, with results familiar to all. Speculators (in

academic studies, not Wall Street) may amuse themselves by

reconstructing world history on the hj^pothesis that Morgan

had stuck to mathematics.

^Yhat might have happened to Germany had Kronecker not

abandoned finance for mathematics also offers a wide field for

speculation. His business abilities were of a high order; he was

an ardent patriot with an uncanny insight into European diplo-

macy and a shrewd cjTUcism - his admirers called it realism -

regarding the unexpressed sentiments cherished by the great

Powers for one another.

At first a liberal like so many intellectual young Jews,

Ilronecker quickly became a rock-ribbed conservative when he

saw which side his own abundant bread was buttered on - after
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his financial exploits, and proclaimed himself a loyal supporter

of that callous old truth-doctor Bismarck. The famous episode

of the Ems telegram 'which, according to some, was the electric

spark that touched off the Franco-Prussian war in 1870, had

Kronecker’s warm approval, and his grasp of the situation was

so firm that before the battle of Weissenburg, when even the

military geniuses of Germany were doubtful as to the outcome

of their bold challenging of France, Kronecker confidently pre-

dicted the success of the entire campaign and was proved right

in detail* At the time, and indeed ah his life, he was on cordial

terms with the leading French mathematicians, and he was

clear-headed enough not to let his political opinions cloud his

just perception of his scientific rivals’ merits. It is perhaps as

well that so realistic a man as Kronecker cast his lot with

mathematics.

Leopold Ejonecker’s life was easy from the day of his birth.

The son of prosperous Jewish parents, he was born on 7

December 1823, at Liegnitz, Prussia. By an unaccountable

oversight Kronecker’s official biographers (Heinrich Weber and

AdoK Kneser) omit all mention of Leopold’s mother, although

he probably had one, and concentrate on the father, who
owned a flourishing mercantile business. The father -was a well-

educated man with an unquenchable thirst for philosophy

which he passed on to Leopold. There was another son, Hugo,

seventeen years yoxmger than Leopold, who became a distin-

guished physiologist and professor at Berne. Leopold’s early

education under a private tutor was supervised by the father;

Hugo’s upbringing later became the loving duty of Leopold.

In the second stage of his education at the preparatory school

for the Gymnasium Leopold -was strongly influenced hy the

co-rector Werner, a man with plnlosophicai and -theological

leanings, who later taught Kronecker when he entered the

Gymnasium. Among other things Kronecker imbibed from

Werner was a liberal draught of Christian theology, for which

he acquired a lifelong enthusiasm. With what looks like his

usual caution, Kronecker did not embrace the Christian faith

till practically on his deathbed when, having seen that it did his

six children no noticeable mischief, he permitted himself to he
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converted from Judaism to evangelical Christianity in his

sixty-eighth year.

Another of Kronecker’s teachers at the G\Tnnasium also

influenced him profoundly and became his lifelong friend,

Ernst Eduard Kummer (1810-93), subsequently professor at

the University of Berlin and one of the most original mathe-

maticians Germany has produced, of whom more will be said

in connexion with Dedekind. These three, Kronecker senior,

Werner, and Kummer, capitalized Leopold's immense native

abilities, formed his mind, and charted the future course of his

life so cunningly that he could not have departed from it if he

had wished.

Already in this early stage of his education we note an out-

standing feature of Kroneckers genial character, his ability to

get along with people and his instinct for forming lasting

friendships with men who had risen in the world or were to rise,

and who would be useful to him either in business or mathe-

matics. This genius for friendships of the right sort, which is one

of the successful business man’s distinguishing traits, was one

of Kroneeker’s more valuable assets and he never mislaid it.

He was not consciously mercenary, nor was he a snob; he was

merely one of those lucky mortals who is more at ease with the

successful than with the unsuccessful.

Kroneckeris performance at school was uniformly brilliant

and many-sided. In addition to the Greek and Latin classics

which he mastered with ease and fox which he retained a life-

long liking, he shone in Hebrew, philosophy, and mathematics.

His mathematical talent appeared early under the expert

guidance of Kummer, from whom he received special instruc-

tion. Young Kronecker however did not concentrate to any

great extent on mathematics, although it was obvious that his

greatest talent lay in that field, but set himself to acquiring a

broad liberal education commensurate with his manifold

abilities. In addition to his formal studies he took music lessons

and became an accomplished pianist and voc^st. Music, he

declared when he was an old man, is the finest of all the fine

arts, with the possible exception of mathematics, which he

likened to poetiy. These many interests he retained throughout
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his life. In none of them was he a mere dabbler: his love of the

classics of antiquity bore tangible fruit in Ms affiliation with

Graeea, a society dedicated to the translation and populariza-

tion of the Greek classics ; his keen appreciation of art made him

an acute critic of painting and sculpture, and his beautiful

house in Berlin became a rendezvous for musicians, among them
Felix Mendelssolm.

Entering the University of Berlin in the spring of 1841,.

Kronecker continued his broad education but began to concen-

trate on mathematics. Berlin at that time boasted Dirichlet

(1S05-59), Jacobi (1804-51) and Steiner (1796-1863) on its

mathematical faculty; Eisenstein (1823-52), the same age as

Kronecker, also was about, and the two became friends.

The influence of Dirichlet on KroneckeFs mathematical

tastes (particularly in the application of analysis to the theory

of numbers) is clear aU through Ms mature writings. Steiner

seems to have made no impression on Mm; Kronecker had no

feeling for geometry. Jacobi gave Mm a taste for elliptic func-

tions wMch he was to cultivate with striking originality and

brilliant success, cMefly in novel applications of magical beauty

to the theory of numbers.

Kronecker's xiniversity career was a repetition on a larger

scale of Ms years at school: he attended lectures on the classics

and the sciences and indulged Ms bent for philosophy by pro-

founder studies than any he had as yet undertaken, particularly

in the system of Hegel. The last is emphasized because some

curious and competent reader may be moved to seek the origin

of Kronecker’s mathematical heresies in the abstrusities of

HegePs dialectic - a quest wholly beyond the powers of the

present writer. Nevertheless there is a strange similarity be-

tween some of the weird unorthodoxies of recent doubts con-

cerning the self-consistency of mathematics - doubts for wMch
Kronecker’s ‘revolution’ was partly responsible - and the

subtleties of Hegel’s system. The ideal candidate for such an

undertaking would be a Marxian communist with a sound

training in Polish many-valued logic, though in what incense

tree this rare bird is to be sought God only knows.

Following the usual custom of German students, Kronecker
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did not spend all his time at Berlin but moved about. Part of

his course Tvas pursued at the University of Bonn, where his old

teacher and friend Kummer had taken the chair of mathe-

matics. During Kroneeker's residence at Bonn the University

authorities were in the midst of a futile war to suppress the

student societies whose cliief object was the fostering of drink-

ing, duelling, and brawling in general. With his customary

astuteness, Kronecker allied himself secretly with the students

and thereby made many friends who were later to prove useful.

Kronecker’s dissertation, accepted by Berlin for his Ph.D. in

1845, was inspired by Kummers work in the theory of numbers
and dealt with the units in certain algebraic number fields.

Although the problem is one of extreme difficulty when it comes

to actually exhibiting the units, its nature can be understood

from the following rough description of the general problem of

units (for any algebraic number field, not merely for the special

fields which interested Kummer and Kronecker). This sketch

may also serve to make more inteUigible some of the allusions

in the present and subsequent chapters to the work of Kummer,
Kronecker, and Dedekind in the higher arithmetic. The matter

is quite simple but requires several preHminary definitions.

The common whole numbers 1,2,3, , . . are called the (posi-

tive) rational integers. Ifw is any rational integer, it is the root

of an algebraic equation of the first degree, whose coefficients

are rational integers, namely a? — jn = 0. This, among other

properties of the rational integers, suggested the generalimtion

of the concept of integers to the ‘numbers’ defined as roots of

algebraic equations. Thus if r is a root of the equation

+ . - . + = 0,

where the a’s are rational integers (positive or negative), and if

further r satisfies no equation of degree less than n, all of

whose coefficients are rational integers and whose leading co-

efficient is 1 (as it is in the above equation, namely the coeffi-

cient of the highest power, a", of aj in the equation is 1), then r

is called an algebraic integer of degree n. For example, 1 V—

5

is an algebraic integer of degree 2, because it is a root of

a:* — 2aj -f 6 0, and is not a root of any equation of degree
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less than 2 "with coefficients of the prescribed kind; in fact

1 — 5 is the root of a; — (1 V — 5) = 0, and the last

coefficient, — (1 ~ V — 5), is not a rational integer.

If in the above definition of an algebraic integer of degree n

suppress the requirement that the leading coefficient be 1,

and say that it can be any rational integer (other than zero,

which is considered an integer), a root of the equation is then

called an algebraic number of degree n. Thus |(1 V — 5) is an

algebraic number of degree 2, but is not an algebraic integer; it

is a root of 2 <2)® — 253 -|”

Another concept, that ofan algebraic numberfield of degreen, is

now introduced: if r is an algebraic number of degree n, the

totality of all expressions that can he constructed from r by

repeated additions, subtractions, multiplications, and divisions

(division by zero is not defined and hence is not attempted or

permitted), is called the algebraic number field generated by r,

and may be denoted by JF’[r]. For example, from r we get r + r,

or 2r; from this and r we get 2r/r or 2, 2r — r or r, 2r x r or

2r2, etc. The degree of this F[r] is n.

It can be proved that every member of F[r] is of the form

^ 4- . . . -f where the c’s are rational numbers,

and further every member of F[r] is an algebraic number of

degree not greater than n (in fact the degree is some divisor of

n). Some, but not all, algebraic numbers in jP[r] will be algebraic

integers.

The central problem of the theory of algebraic numbers is to

investigate the laws of arithmetical divisibility of algebraic

integers in an algebraic number field of degree n. To make this

problem definite it is necessary to lay down exactly what is

meant by ^arithmetical divisibility’, and for this we must

understand the like for the rational integers.

We say that one rational integer, m, is divisible by another, d,

ifwecanfindarationalinteger,gf,suchthat m = q Xd;d (also g)

is called a divisor of m. For example 6 is a divisor of 12, because

12 = 2 X 6; 5 is not a divdsor of 12 because there does not exist

a rational integer q such that 12 = g x 5,

A (positive) rationalpnwie is a rational integer greater than 1
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whose only positive di^-isors are 1 and the integer itself. 'When

we try to extend this definition to algebraic integers we soon

see that we have not found the root of the matter, and we must
seek some property of rational primes which can be carried over

to algebraic integers. This property is the following: if a rational

primep divides the product a x h of two rational integers, then

(it can be proved that) p di^ddes at least one of the factors a, b

of the product.

Considering the unit, 1, of rational arithmetic, we notice that

1 has the peculiar property that it divides every rational integer;

*— 1 also has the same property, and 1,-1 are the only rational

integers ha\dng this property.

These and other clues suggest something simple that will

work, and we lay down the following definitions as the basis for

a theorj" of arithmetical divisibility" for algebraic integers. We
shall suppose that all the integers considered lie in an algebraic

number field of degree n.

If r,5j< are algebraic integers such that r = s x i, each of s, t

is called a divisor of r.

If j is an algebraic integer which divides every algebraic

integer in the field, j is called a unit (in that field). A given field

may contain an infinity of units, in distinction to the pair 1,

— 1 for the rational field, and this is one of the things that

breeds difficulties.

The next introduces a radical and disturbing distinction

between rational integers and algebraic integers of degree

greater than 1.

An algebraic integer other than a unit whose only divisors are

units and the integer itself, is called irreducible. An irreducible

algebraic integer which has the property that if it divides the

product of two algebraic integers, then it divides at least one of

the factors, is called a prime algebraic integer. Ail primes are

iixeducibles, but not all irreducibles are primes in some alge-

braic number fields, for example in F[V — 5], as will be seen

in a moment. In the common arithmetic of 1,2,3 ... the

irreducibles and the primes are the same.

In the chapter on Fermat the fundamental theorem of

(rational) arithmetic was mentioned: a rational int^er is the
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product of (rational) primes in only one way. From this theorem

springs all the intricate theory of divisibility for rational

integers. Unfortunately the fundamental theorem does not hold

in all algebraic number fields of degree greater than one, and

the result is chaos.

To give an instance (it is the stock example usually exhibited

in text-books on the subject), in the field F[V — 5] we have

6 = 2X3 = (1 + V~S) X (1 - V~5);

each of2, 8, — 3>1 — V — 5 is a prime in this field (as

may be verified with some ingenuity), so that 6, in this field, is

not uniquely decomposable into a product of primes.

It may be stated here that Kronecker overcame this difficulty

by a beautiful method which is too detailed to be explained

untechnically, and that Dedeldnd did likewise by a totally

different method which is much easier to grasp, and which wiO

be noted when we consider his life. Dedekind’s method is the

one in widest use to-day, but this does not imply that Kro-

necker’s is less powerful, nor that it will not come into favour

when more arithmeticians become familiar with it.

In his dissertation of 1845 Kronecker attacked the theory of

the units in certain special fields - those defined by the equa-

tions arising from the algebraic formulation of Gauss’ problem

to divide the circumference of a circle into n equal parts or,

what is the same, to construct a regular polygon of n sides.

We can now close up one part of the account opened by
Fermat. In struggling to prove Fermat's Xast Theorem’ that

a*” -f == s” is impossible in rational integers x, y, z (none zero)

if n is an integer greater than 2, arithmeticians took what looks

like a natural step and resolved the left-hand side, a?” -f y”,

into its n factors of the first degree (as is done in the usual

second course of school algebra). This led to the exhaustive

investigation of the algebraic number field mentioned above in

connexion with Gauss’ problem — after serious but readily

understandable mistakes had been made.

The problem at first was studded with pitfalls, into which

many a competent mathematician and at least one great one -

Cauchy - tumbled headlong. Cauchy assumed as a matter of
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course that in the algebraic number field concerned the funda-

mental theorem of arithmetic must hold. After several exciting

but premature communications to the French Academy of

Sciences, he admitted his error. Being restlessly interested in a

large number of other problems at the time, Cauchy turned

aside and failed to make the great discovery which was well

within the capabilities of his prolific genius and left the field to

Kummer. The central difficulty was serious : here was a species

of integers’ - those of the field concerned — which defied the

fundamental theorem of arithmetic; how reduce them to law

and order?

The solution of this problem by the invention of a totally

new kind of 'number’ appropriate to the situation, which (in

terms of these ‘numbers’) automatically restored the funda-

mental theorem of arithmetic, ranks with the creation of non-

Euclidean geometry as one ofthe outstanding scientific achieve-

ments of the nineteenth century, and it is well up in the high

mathematical achievements of all history. The creation of the

new ‘numbers’ - so-called ‘ideal numbers’ - was the invention

of Kummer in 1845. These new ‘numbers’ were not constructed

for all algebraic number fields but only for those fields arising

from the division of the circle.

Kummer too had fallen foul of the net which snared Cauchy,

and for a time he believed that be had proved Fermat’s ‘Last

Theorem’. Then Drrichlet, to whom the supposed proof was

submitted for criticism, pointed out by means of an example

that the fundamental theorem of arithmetic, contrary to

Rummer’s tacit assumption, does not hold in the field con-

cerned. This failure of Kummer’s was one ofthe most fortunate

things that ever happened in mathematics. Like Abel’s initial

mistake in the matter of the general quintic, Rummer’s turned

him into the right track, and he invented his ‘ideal numbers’.

Kummer, Kronecker, and Dedekind, in their invention of the

modem theory of algebraic numbers, by enlarging the scope of

arithmetic ad infinitum and bringing algebraic equations within

the purview of number, did for the higher arithmetic and the

theory of algebraic equations what Gauss, Lobatchewsky,

Johann Bolyai, and Biemann did for geometry in emancipating
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it from slavery in Euclid's too narrow economy. And just as the

inventors of non-Euclidean geometiy" revealed vast and hitherto

unsuspected horizons to geometry and physical science, so the

creators of the theory of algebraic numbers uncovered an

entirely new light, illuminating the whole of arithmetic and

throwing the theories of equations, of systems of algebraic

curves and surfaces, and the very nature of number itself, into

sharp relief against a firm background of shiningly simple

postulates.

The creation of ‘ideals' - Dedekind’s inspiration from Kum-
mer's \ision of ‘ideal numbers’ ~ renovated not only arithmetic

but the whole of the algebra which springs from the theory of

algebraic equations and systems of such equations, and it

proved also a reliable clue to the inner significance of the

‘enumerative geometry’ of Pliicker, Cayley and others, which

absorbed so large a fraction of the energies of the geometers of

the nineteenth century who busied themselves with the inter*

sections of nets of curves and surfaces. And last, if Kronecker’s

heres}" against Weierstrassian analysis (noted later) is some day

to become a stale orthodoxy, as all not utterly insane heresies

sooner or later do, these renovations of our familiar integers,

1,2,3, ... , on which aU analysis strives to base itself, may ulti-

mately indicate extensions of analysis, and the Pythagorean

speculation may envisage generative properties of ‘number’

that Pythagoras never dreamed of in all his wild philosophy.

Ejonecker entered this beautifully difficult field of algebraic

numbers in 1845 at the age of twenty-two with his famous

dissertation Be Umtatibiis Complecds (On Complex Vniis), The

particular units he discussed were those in algebraic number

fields arising from the Gaussian problem of the division of the

circumference of a circle into n equal arcs. For this work he got

his Ph.D.

The German universities used to have - and may still have -

* One problem in this subject: an algebraic curve may have loops

on it, or places where the curve crosses its tangents; given the degree

of the curve, how many such points are there? Or if we cannot

answer that, what equations connecting the number of these and

other exceptional points must hold? Similarly for surfaces.
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a laudable custom in connexion mth the taking of a Ph.D. : the

successful candidate was in honour bound to fling a partv ^
usually a prolonged beer bust with all the trimmings - for his

examiners. At such festivities a mock examination consisting

of ridiculous questions and more ridiculous answers was some-

times part of the fun. Kronecker incited practically the whole
facultVs including the Dean, and the memory ofthat undignified

feast in celebration of his degree was, he declared in later years,

the happiest of his life.

In at least one respect &onecker and his scientific enemy
Weierstrass were much alike: they were both very great gentle-

men, as even those who did not particularly care for either

admitted. But in nearly everything else they were almost

comically different. The climax of Kronecker’s career was his

prolonged mathematical war against Weierstrass, in which
quarter was neither given nor asked. One was a born algebraist,

the other almost made a religion of analysis. Weierstrass was
large and rambling, Kronecker a compact, diminutive man,
not over five feet tall, hut perfectly proportioned and sturdy.

After his student days Weierstrass gave up his fencing;

Kronecker was always an expert gjunnast and swimmer and in

later life a good moimtaineer.

Eye-witnesses of the battles between this curiously mis-

matched pair teUhow the big fellow, annoyed by the persistence

of the little fellow, would stand shaking himself iilrf* a good-

natured St Bernard dog trying to rid himself of a determined
fly, only to excite his persecutor to more ingenious attacks, till

Weierstrass, giving up in despair, would amble off, Kronecker
at his heels stiU talking maddeningly. But for all their scientific

differences the two were good friends, and both were great

mathematicians without a particle of the ‘great man’ complex
that too often inflates the shirts of the would-be mighty.

Kronecker was blessed with a rich imcle in the banking busi-

ness, The uncle also controlled extensive farming enterprises.

All this fen into young Kronecker s hands for administration on
the death ofthe uncle, shortly after the budding mathematician
had taken his degree at the age of twenty-two. The eight years

from 1845 to 1853 were spent in managing the estate and run-
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ning the business, which. Kjonecker did with great thoroughness

and financial success. To manage the landed property efficiently

he even mastered the principles of agriculture.

In 1848, at the age of twenty-five, the energetic'young busi-

ness man very prudently fell in love with his cousin, Fanny
Prausnitzer, daughter of the defunct wealthy uncle, married

her, and settled down to raise a family. They had six children,

four of whom survived their parents. Kroneeker's married life

was ideally happy, and he and his wife - a gifted, pleasant

woman — brought up their children with the greatest devotion.

The death of Kronecker’s wife a few months before his own last

illness was the blow which broke him.

During his eight years in business Kronecker produced no
mathematics. But that he did not stagnate mathematically is

shown by his publication in 1853 of a fundamental memoir on

the algebraic solution of equations. All through his activity as a

man of affairs Kronecker had maintained a lively scientific

correspondence with his former master, Kummer, and on

escaping from business in 1853 he visited Paris, where he made
the acquaintance of Hermite and other leading French mathe-

maticians. Thus he did not sever communications with the

scientific world when circumstances forced him into business,

but kept his soul alive by making mathematics rather than

whist, pinochle, or draughts his hobby.

In 1853, when Kronecker's memoir on the algebraic solva-

bility of equations (the nature of the problem was discussed in

the chapters on Abel and Galois) was published, the Galois

theory of equations was understood by very few. Kronecker's

attack was characteristic of much of his finest work. Kronecker

had mastered the Galois theory, indeed he was probably the

only mathematician of the time (the late 1840's) who had pene-

trated deeply into Galois’ ideas; Liouville had contented him-

self with a sufficient insight into the theory to enable him to

edit some of Galois’ remains intelligently.

A distinguishing feature of Kronecker's attack was its com-

prehensive thoroughness. In this, as in other investigations in

algebra and the theory of numbers, Ejponecker took the refined

gold of his predecessors, toiled over it like an inspired jeweller,
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added gems of his own, and made from the precious raw

material a flawless work of ark with the unmistakable impress

of his artistic mdi\dduaiity upon it. He delighted in perfect

things; a few of his pages will often exhibit a complete develop-

ment of one isolated result with all its implications immanent

but not loading the unique theme with expressed detail. Conse-

quently even the shortest of his papers has suggested important

developments to his successors, and his longer works are

inexhaustible mines of beautiful things.

Kronecker was what is called an ‘algorist’ in most of his

works. He aimed to make concise, expressive formulae tell the

story and automatically reveal the action from one step to the

next so that, when the climax was reached, it was possible to

glance back over the whole development and see the apparent

inevitability of the conclusion from the premises. Details and

accessory aids were ruthlessly pruned away imtil only the main

trunk of the argument stood forth in naked strength and sim-

plicity. In short, Kronecker was an artist who used mathe-

matical formulae as his medium.

After Kronecker's works on the Galois theory the subject

passed from the private ownership of a few into the common

property of all algebraists, and Kronecker had wrought so

artistically that the next phase of the theory of equations - the

current postulational formulation of the theory and its exten-

sions - can be traced back to him. His aim in algebra, like that

of Weierstrass in analysis, was to find the ‘natural’ way - a

matter of intuition and taste rather than scientific definition -

to the heart of his problems.

The same artistry and tendency to unification appeared in

another of his most celebrated papers, which occupied only a

couple of pages in his collected works, On the Solution of the

General Equation of the Fifth Degree, first published in 1858,

Hermite, we recall, had given the first solution, by means of

elliptic (modular) functions in the same year, Kronecker attains

Hermite’s solution - or what is practically the same - by

applying the ideas of Galois to the probfem, thereby making the

miracle appear more ‘natural’. In another paper, also short,

over which he has spent most of his time for five years, he
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returns to the subject in 1861, and seeks the reason why the

general equation of the fifth degree is solvable in the manner in

Tvhich it is, thus taking a step bej’-ond Abel who settled the

question of solvability ‘by radicals’.

Much of Kronecker’s work has a distinct arithmetical tinge,

either of rational arithmetic or of the broader arithmetic of

algebraic numbers. Indeed, if his mathematical activity had

any guiding clue, it may be said to have been his desire, perhaps

subconscious, to ariihmeHze all mathematics, from algebra to

analysis. ‘GJod made the integers’, he said, ‘all the rest is the

work of man.’ Kronecker’s demand that analysis be replaced by
finite arithmetic was the root of his disagreement with Weier-

strass. Universal arithmetization may be too narrow an ideal

for the luxuriance of modern mathematics, but at least it has

the merit of greater clarity than is to be found in some others.

Geometry never seriously attracted Kronecker. The period

of specialization was already well advanced when Kronecker

did most of his work, and it would probably have been impos-

sible for any man to have done the profoundly perfect sort of

work that Kronecker did as an algebraist and in his own
peculiar type of analysis and at the same time have accom-

plished anything of significance in other fields. Specialization is

frequently damned, but it has its virtues.

A distinguishing feature of many of Kronecker’s technical

discoveries was the intimate way in which he wove together the

three strands of his greatest interests ~ the theory of numbers,

the theory of equations, and elliptic functions - into one beau-

tiful pattern in which unforeseen symmetries were revealed as

the design developed and many details were unexpectedly

imaged in others far away. Each of the tools with which he

worked seemed to have been designed by fate for the more

eMcient functioning of the others. Not content to accept this

mysterious unity as a mere mystery, Kronecker sought and

found its underlying structure in Gauss’ theory of binary

quadratic forms, in which the main problem is to investigate

the solutions in integers of indeterminate equations of the

second degree in two unknowns.

Kronecker’s great work in the theory of algebraic numbers
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was not part of this pattern. In another direction he also

departed occasionally from his principal interests when,

according to the fashion of his times, he occupied himself with

the purely mathematical aspects of certain problems (in the

theory of attraction as in Newton’s gravitation) of mathema-

tical physics. His contributions in this field were of mathema-

tical rather than physical interest.

Up till the last decade of his life Kronecker was a free Tnajx

with obligations to no employer. Nevertheless he voluntarily

assumed scientific duties, for which he received no remunera-

tion, when he availed himself of his privilege as a member of the

Berlin Academy to lecture at the University of Berlin. From
1S61 to 1883 he conducted regular courses at the university,

principally on Ms personal researches, after the necessary intro-

ductions. In 1883 Kummer, then at Berlin, retired, and

Kronecker succeeded his old master as ordinary professor. At

this period of his life he travelled extensively and was a frequent

and welcome participant in scientific meetings in Great Britain,

France, and Scandinavia,

Throughout his career as a mathematical lecturer Kjonecker

competed with \Teierstrass and other celebrities whose subjects

were more popular than Ms own. Algebra and the theory of

numbers have never appealed to so wide an audience as have

geometry and analysis, possibly because the connexions of the

latter with physical sdenee are more apparent.

Kronecker took Ms aristocratic isolation good-naturedly and

even with a certain satisfaction. His beautifully clear introduc-

tions deluded Ms auditors into a belief that the subsequent

course of lectures would be easy to follow. This belief evapor-

ated rapidly as the course progressed, until after three sessions

aU but a faithful and obstinate few had silently stolen away -

many of them to listen to Weierstrass. Kronecker rejoiced. A
curtain could now he drawn across the room behind the first

few rows of chairs, he joked, to bring lecturer ^d auditors into

cosier intimacy- The few disciples he retained followed Mm
devotedly, walking home with him to continue the discussions

of the lecture room and frequently affording the crowded side-

walks of Berlin the diverting spectacle of an excited little man
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talking with, his whole body - especially his hands - to a spell-

bound group of students blocldng the traffic. His house was

always open to his pupils, for E^roneeker really hked people, and

bis generous hospitality was one of the greatest satisfactions of

Ms life. Severalof his students became eminent mathematicians,

but his ‘school’ was the whole world and he made no effort to

acquire an artificially large following.

The last is characteristic of Kjonecker s own most startlingly

independent work. In an atmosphere of confident belief in the

soundness of analysis Kronecker assumed the unpopular role

of the philosophical doubter. Not many of the great mathema-

ticians have taken philosophy seriously; in fact the majority

seem to have regarded philosophical speculations with repug-

nance, and any epistemological doubt affecting the soimdness

of their work has usually been ignored or impatiently brushed

aside.

With Kronecker it was different. The most original part of

his work, in which he was a true pioneer, was a natural out-

growth of his philosophical mclinations. His father, Werner,

Kummer, and his own wide reading in philosophical literature

had influenced him in the direction of a critical outlook on all

human knowledge, and when he contemplated mathematics

from this questioning point of view he did not spare it because

it happened to be the field of his own particular interest, but

infused it with an acid, beneficial scepticism. Although but

little of this found its way into print it annoyed some of his

contemporaries intensely and it has survived. The doubter did

not address himself to the living but, as he said, ‘to those who
shall come after me’. To-day these followers have arrived, and

owing to their united efforts-although they often succeed only

in contradicting one another - we are beginning to get a clearer

insight into the nature and meaning of mathematics.

Weierstrass (Chapter 22) would have constructed mathe-

matical analysis on his conception of irrationals as defined by

infinite sequences of rationals. Kronecker not only disputes

Weierstrass; he would nullify Eudoxus. For him as for Pytha-

goras only the God-given integers 1,2,3, , ‘exist’: all the

rest is a futile attempt of mankind to improve on the Creator.
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Weierstrass on tlie other hand believed that he had at last made
the square root of 2 as comprehensible and as safe to handle as

2 itself; Kronecker denied that the square root of 2 ‘exists’, and
he asserted that it is impossible to reason consistently with or

about the Weierstrassian construction for this root or for any

other irrational. Neither his older colleagues nor the young to

whom Kronecker addressed himselfgave his revolutionary idea

a very enthusiastic welcome.

\Yeierstrass himself seems to have felt uneasy: certainly he

was hurt. His strong emotion is released mostly in one tre>

mendous German sentence*^ like a fugue, which it is almost

impossible to preserv^e in English. ‘But the worst of it is’, he

complains, ‘that Kronecker uses his authority to proclaim that

all those who up to new have laboured to establish the theory

of functions are sinners before the Lord. 'VMien a whimsical

eccentric like Christoffei [the man whose somewhat neglected

work was to become, years after liis death, an important tool in

difierential geometry as it is cultivated to-day in the mathe-

matics of relativity"] says that in twenty or thirty years the

present theory" of functions will be buried and that the whole of

analysis will be referred to the theory of forms, we reply with

a shrug. But when Kronecker delivers himself of the following

verdict which I repeat tcord/or xisord: ‘"If time and strength are

granted me, I myself will show the mathematical world that not

only geometry, but also arithmetic can point the way" to

analysis, and certainly a more rigorous way. If I cannot do it

my"self those who come after me will . . . and they wiD recognize

the incorrectness of all those conclusions with which so-called

analysis works at present” - such a verdict from a man whose

emitjent talent and distinguished performance in mathematical

research I admire as sineereljr and with as much pleasure as all

ids colleagues, is not only humiliating for those whom he adjures

to acknowledge as an error and to forswear the substance of

what has constituted the object of their thought and unremit-

ting labour, hut it is a direct appeal to the yoxmger generation

to desert their present leaders and rally around him as the

disciple of a new system which miist be founded. Truly it is sad.

In a letter to Sonja KowalewsM, 1885.
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and it fills me with a bitter grief, to see a man, whose glory is

without flaw, let himself be driven by the well justified feeling

of his own worth to utterances whose injurious effect upon
others he seems not to perceive.

‘But enough of these things, on which I have touched only to

explain to you the reasonwhy I can no longer take the same joy

that I used to take in my teaching, even if my health were to

permit me to continue it a few years longer. But you must not

speak of it
;
I should not like others, who do not knowme as well

as you, to see in what I say the expression of a sentiment which

is in fact foreign to^me.’

Weierstrass was seventy and in poor health when he wrote

this. Could he have lived till to-day he would have seen his own
great system stiQ flourishing like the proverbial green bay tree.

Kronecker's doubts have done much to instigate a critical re-

examination of the foundations of all mathematics, but they

have not yet destroyed analysis. They go deeper, and if any-

thing of far-reaching significance is to be replaced by something

firmer but as yet unknown, it seems likely that a good part of

Kronecker's own work will go too, for the critical attack which

he foresaw has uncovered weaknesses where he suspected

nothing. Time makes fools of us all. Our only comfort is that

greater shall come after us.

Kronecker s "revolution', as his contemporaries called his sub-

versive assault on analysis, would banish all but the positive

integers from mathematics. GJeometry since Descartes has been

largely an affair of analysis applied to ordered pairs, triples, . . •

of real numbers (the ‘numbers’ which correspond to the dist-

ances measured on a given straight line from a fixed point on the

line); hence it too would come tmder the sway of Kronecker’s

programme. So familiar a concept as that of a negative integer,

— 2 for instance, would not appear in the mathematics Kron-

ecker prophesied, nor would common fractions.

Irrationals, as Weierstrass points out, roused Kroneckeris

special displeasure. To speak of j:- — 2 = 0 having a root would

be meaningless. AH ofthese dislikes and objections are of course

themselves meaningless unless they can be backed by a definite

programme to replace what is rejected.
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Kxonecker actually did this, at least in outline, and indicated

how the whole of algebra and the theory- of numbers, including

algebraic numbers, can be reconstructed in accordance with his

demand. To get rid of V — 1 , for example, we need only put a

letter for it temporarily, say i, and consider poUmomials con-

taining i and other letters, say . . . Then we manipulate

these polynomials as in elementary’ algebra, treating i like anv

of the other letters, till the last step, when every’ polynomial

containing i is di\ided by P 1 and everything but the re-

mainder obtained from tliis division is discarded. Any’one who
remembers a little elementary’ algebra may- readily’ convince

himself that this leads to all the familiar properties of the

mysteriously misnamed 'imaginary’’ mmcibers of the text-books.

In a similar manner negatives and fractions and all algebraic

numbers (other than the positive rational integers) are elimi-

nated from mathematics - if desired - and only the blessed

positive integers remain. The inspiration about discarding

V 1 goes back to Cauchy in 1847. This was the germ of

Kronecker s programme.

Those who dislike Kronecker’s ‘revolution’ call it a Putsch,

which is more like a drunken brawl than an orderly’ revolution.

Nevertheless it has led in recent yrears to two constructively

critical movements in the whole of mathematics: the demand
that a construction in a finite number of steps be given or

proved to be possible for any ‘number’ or other mathematical
‘entity’ whose ‘existence’ is indicated, and the banishment

from mathematics of all definitions that cannot be stated expli-

citly in a finite number of words,insistence upon these demands
has already done much to clarify our conception of the nature

of mathematics, but a vast amount remains to be done. As this

work is still in progress we shall defer further consideration of

it until we come to Cantor, when it will be possible to exhibit

examples.

Kronecker’s disagreement with Weierstrass should not leave

an unpleasant impression, as it may^ do if we ignore the rest of

Kronecker’s generous life. Kronecker had no intention of

wounding his kindly old senior; he merely let his tongue run

away with him in the heat of a purely’’ mathematical argument,
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and Weierstrass, when he was in good spirits, laughed the whole

attack off, as he should have done, knowing well that just as he

had improved on Eudoxus, so his successors would probably

improve upon him. Possibly if Kronecker had been six or seven

inches taller than he was he would not have felt constrained to

over-emphasize his objections to analysis so vociferously.

Much of the whole wordy dispute sounds suspiciously like the

over-correction of an unjustified inferiority complex.

The reaction of many mathematicians to Kronecker’s ‘revo-

lution’ was summed up by Poincare when he said that Kron-

ecker had been enabled to do so much fine mathematics became

he frequently forgot his own mathematical philosophy. Kike

not a few epigrams this one is just untrue enough to be witty.

Kronecker died of a bronchial illness in Berlin on 29 De-

cember 1891 in his sixty-ninth year.



CHAPTES TWENTY-SIX

ANIMA CANDIDA

Biemann

It has been said of Coleridge that he wrote but Kttle poeti^- of

the highest order of excellence, but that that little should be

bound in gold. The like has been said of Bernhard Riemann, the

mathematical fruits of whose all too brief summer fill only one

octavo volume. It may also be truly said of Riemann that he

touched nothing that he did not in some measure revolutionize.

One of the most original mathematicians of modem times,

Riemann unfortunately inherited a poor constitution, and he

died before he had reaped a tithe of the golden harvests in his

fertile mind. Had he been bom a century later than he was,

medical science could probably have leased him twenty or thirty

more years of life, and mathematics would not now be waiting

for his successor.

Georg Friedrich Bernhard Riemann, the son of a Lutheran

pastor, and the second of six children (two boys, four girls), was

bom in the little village of Breselenz, in Hanover, Germany, on

17 September 1826. His father had fought in the Napoleonic

wars, and on settling down to a less barbarous mode of living

had married Charlotte Ebell, daughter of a court councillor.

Hanover in 1826 was not exactly prosperous, and the circum-

stances of an obscure country parson with a wife and six chil-

dren to feed and clothe were far from affluent. It is claimed by

some biographers, apparently with justice, that the frail health

and early deaths of most of the Reimann children were the

result of under-nourishment in their youth and were not due to

poor stamina. The mother also died before her children were

grown.

In spite of poverty the home life was happy, and Riemann

always retained the wannest affection - and homesickness,
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when he was absent-for all his lovable family. From his earliest

years he was a timid, diffident soul with a horror of speaking in

public or attracting attention to himself. In later life this

chronic shyness proved a very serious handicap and occa-

sioned him much agonized misery till he overcame it by diligent

pr^aration for every public utterance he was likely to make.

The engaging bashfulness of Riemann’s boyhood and early

manhood, which endeared him to all who met him, was in

strange contrast to the ruthless boldness of his matured scien-

tific thought. Supreme in the world of his own creation, he

realized bis transcendent powers and shrank from nobody, real

or imaginary.

While Riemann was still an infant his father was transferred

to the pastorate of Quickbom. There young Riemann receh^ed

his first instruction, from his father, who appears to have been

an excellent teacher. From the very first lessons Bernhard

showed an unquenchable thirst for learning. His earliest

interests were historical, particularly in the romantic and tragic

history of Poland. As a boy of five Bernhard gave his father no

peace about unhappy Poland, but demanded to be told over

and over again the legend of that heroic country’s gallant (and

at times slightly fatuous) struggles for liberty and, in the late

Woodrow "Wilson’s rich, fruity phrase, ‘self-determinatioii’.

Arithmetic, begun at about six, offered something less har-

rowing for the sensitive young boy to dwell on. His inborn

mathematical genius now asserted itself. Bernhard not only

solved all the problems shoved at him, but invented more

difficult teasers to exasperate his brother and sisters. Already

the creative impulse in mathematics dominated the boy's

mind. At the age of ten he received mstruction in more ad-

vanced arithmetic and geometry from a professional teacher,

one Schulz, a fairly good pedagogue. Schulz soon found himself

following his pupil, who often had better solutions than he-

At fourteen Riemann went to stay with his grandmother at

Hanover, where he entered his first Gymnasium, in the upper

third class. Here he endured his first overwhelming loneliness.

His shyness made him the butt of his schoolfellows and drove

him in upon his own resources. After a temporary setback his
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schoolwork was uniformly excellent, but it gave birn no coin-

fort, and his only solace was the joy of buying such inconsider-

able presents as his pocket money would permit, to send home
to his parents and brother and sisters on their birthdays. One
present for his parents he invented and made himself, an
original perpetual calendar, much to the astonishment of his

incredulous schoolfellows. On the death of his grandmotherWo
years later, Riemann was transferred to the Gymnasium at

Liineburg, where he studied till he was prepared, at the age of

nineteen, to enter the University of Gottingen. At Liineburg

Riemann was within walking distance of home. He took fuH

advantage of his opportunities to escape to the warmth of his

own fireside. These years of his secondary education, while his

health was still fair, were the happiest of his life. The tramps

back and forth between the Gymnasium and Quickborn taxed

his strength, but in spite of his mother’s anxiety that he might

wear himself out, Riemann continued to over-exert himself in

order that he might be with his family as often as possible.

While still at the Gymnasium Riemann suffered from the

itch for finality and perfection which was later to slow up his

scientific publication. This defect - if such it was - caused him
great difficulty in his written language exercises and at first

made it doubtful whether he would ‘pass’. But this same trait

was responsible later for the finished form of two of his master-

pieces, one of which even Gauss declared to be perfect. Things

improved when Seyffer, the teacher of Hebrew, took young
Riemann into his own house as a boarder and ironed him out.

The two studied Hebrew together, Riemann frequently giv-

ing more than he took, as the future mathematician at that

time was all set to gratify his father’s wishes and become a

great preacher — as if Riemann, with his tongue-tied bashful-

ness, could ever have thumped hell and damnation or redemp-

tion and paradise out of any pulpit. Riemann himself was
enamoured of the pious prospect, and although he never got as

fax as a probationary sennon, he did employ his mathematical

talents in an attempted demonstration, in the manner of

Spinoza, of the truth of Genesis. Undaunted by his failure

young Riemann persevered in his faith and remained a sincere
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Christian all his life. As his biographer (Dedekind) states, 'He

reverently avoided disturbing the faith of others; for him the

main thing in religion was daily self-examination’. By the end

of his GjTimasium course it was plain even to Riemann that

Great Headquarters could have but little use for him as a router

of the devil, but might be able to employ him profitably in the

conquest of nature. Thus once again, as in the cases of Boole

and Kummer, a brand was plucked from the burning, ad

majorem Dei gloriam.

The director of the Gymnasium, Schmalfuss, having ob-

served Riemann’s talent for mathematics, had given the boy

the run of his private library and had excused him from attend-

ing mathematical classes. In this way Riemann discovered his

inborn aptitude for mathematics, but his failure to realize

immediately the extent of liis ability is so characteristic of his

almost pathological modest\’ as to be ludicrous.

Schmalfuss had suggested that Riemann borrow some

mathematical book for private study. Riemann said that would

be nice, provided the book was not too easy, and at the sugges-

tion of Schmalfuss carried off Legendre's Theorie des Xombres

(Theory of Numbers). This is a mere trifle of 859 large quarto

pages, many of them crabbed with very close reasoning indeed.

Six days later Riemann returned the book. 'How far did you

read?’ Schmalfuss asked. Without repljdng directly, Riemann

expressed his appreciation of Legendre’s classic. ‘That is cer-

tainly a wonderful book, I have mastered it.’ And in fact he

had. Some time later when he was examined he answered

perfectly, although he had not seen the book for months.

No doubt this is the origin ofRiemann’s interest in the riddle

of prime numbers. Legendre has an empirical formula estimat-

ing the approximate number of primes less than any pre-

assigned number; one of Riemann's profoundest and most

suggestive works (only eight pages long) was to be in the same

general field. In fact 'Riemann’s hypothesis’, originating in his

attempt to improve on Legendre, is to-day one of the out-

standing challenges, if not the outstanding challenge, to pure

mathematicians.

To anticipate slightly, we may state here what this hypothe-
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sis is. It occxirs in the famous memoir Ueber die Anzahl der

Primzahlen unter einer gegehenen Grosse (On the number of

prime numbers xmder a given magnitude), printed in the

monthly notices of the Berlin Academy for November 1859,

when Biemann was thirty-three. The problem concerned is to

give a formula which will state how many primes there are less

than any given number n. In attempting to solve this Riemaun

-was driven to an investigation of the infinite series1111
I + ~ + ~ + 7i-r^ + 9

2® 3^ 4* 5®

in which s is a complex number, say s = w -}- izj (z = V — i),

where u and v are real numbers, so chosen that the series con-

verges, With this proviso the infinite series is a definite function

of s, say ^ (s) (the Greek zeta, is always used to denote this

function, which is called ‘Riemann’s zeta function’); and as s

varies, ^ (s) continuously takes on different values. For what

values of s mill I (s) be zero2 Riemann conjectured that all such

values of s for which u lies between 0 and 1 are of the form J -f

iVi namely, all have their real part equal to

This is the famous hypothesis. IVhoever proves or disproves

it will cover himselfwith glory and incidentally dispose ofmany
extremely difficult questions in the theory of prime numbers,

other parts of the higher arithmetic, and in some fields of ana-

lysis. Expert opinion favours the truth of the hypothesis. In

1914 the English mathematician G. H. Hardy proved that cm

infinity of values of s satisfy the hypothesis, but an infinity is

not necessarily all. A decision one way or the other disposing of

Riemann’s conjecture would probably be of greater interest to

mathematicians than a proof or disproof of Fermat’s Last

Theorem, Riemann’s hypothesis is not the sort of problem that

can be attacked by elementary methods. It has already given

rise to an extensive and thorny literature.

Legendre was not the only great mathematician whose

works Riemann absorbed by himself - always with amazing

speed - at the Gymnasium; he became familiar with the cal-

culus and its ramifications through the study of Euler. It is

rather surprising that from such an antiquated start in analysis
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(Euler’s approach was out of date by the middle 1840's owing

to the work of Gauss, Abel, and Cauchy), Riemann later became

the acute analyst that he did. But from Euler he may have

picked up something which also has its place in creative mathe-

matical work, an appreciation of symmetrical formulae and

manipulative ingenuity. Although Riemann depended chiefly

on what may be called deep philosophical ideas - those which

get at the heart of a theory - for his greater inspirations, his

work nevertheless is not wholly lacking in the ‘mere ingenuity’

of which Euler was the peerless master and w’hich it is now
quite the fashion to despise. The pursuit of pretty formulae and

neat theorems can no doubt quickly degenerate into a silly vice,

but so also can the quest for austere generalities which are so

very general indeed that they are incapable of application to

any particular. Riemann' s instinctive mathematical tact pre-

served him from the had taste of either extreme.

In 1S46, at the age of nineteen, Riemann matriculated as a

student of philology and theology at the University of Gottin-

gen. His desire to please his father and possibly help financially

by securing a paying position as quickly as possible dictated the

choice of theology. But he could not keep away from the mathe-

matical lectures of Stem on the theory of equations and on

definite integrals, those of Gauss on the method of least squares,

and Goldschmidt’s on terrestrial magnetism. Confessing all to

his indulgent father, Riemann prayed for permission to alter

his course. His father's ungrudging consent that Bernhard

follow mathematics as a career made the young man supremely

happy - also profoundly grateful.

After a year at Gottingen, where the instruction was decid-

edly antiquated, Riemann migrated to Berlin to receive from

Jacobi, Dirichlet, Steiner, and Eisenstem his initiation into new

and vital mathematics. From all of these masters he learned

much - advanced mechanics and higher algebra from Jacobi,

the theory of numbers and analysis from Dirichlet, modem geo-

metry from Steiner, wliiie from Eisenstein, three years older

than himself, he learned not only elliptie functions but self-

confidence, for he and the young master had a radical and most

energizing difierence of opinion as to how the theory should be
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developed. Eisenstein insisted on beautiful formulae, some'what

in the manner of a modernized Euler; Riemann wanted to intro-

duce the complex variable and derive the entire theory, with a

minimum of calculation, from a few simple, general principles.

Thus, no doubt, originated at least the germs of one of Rie-

mann’s greatest contributions to pure mathematics. As the

origin of Riemann’s work in the theory of functions of a com-

plex variable is of considerable importance in his own history

and in that of modern mathematics, we shall glance at what is

known about it.

Briefly, nothing definite. The definition of an analytic func-

tion of a complex variable, discussed in connexion with Gauss’

anticipation of Cauchy’s fundamental theorem, was essentially

that of Riemann. \Vhen expressed analytically instead of geo-

metricall}" that definition leads to the pair of partial differential

equations* which Riemann took as his point of departure for a

theory of functions of a complex variable. According to Dede-

Idnd, ‘Riemann recognized in these partial differential equa-

tions the essential definition of an [analji:ic] function of a com-

plex variable. Probably these ideas, of the highest importance

for his future career, were worked out by him in the fall vaca-

tion of 1847 [Riemann was then twenty-one] for the first time.’

Another version of the origin of Riemann' s inspiration is due

to Sylvester, who tells the following story, which is interesting

even if possibly untrue. In 1896, the year before his death,

Sylvester recalls staying a* ‘a hotel on the river at Nirremberg,

where I conversed outside with a Berlin bookseller, bound, like

myself, for Prague. ... He told me he was formerly a feUow

pupil of Riemann, at the University, and that, one day, after

receipt of some numbers of the Comptes rendus from Paris, the

latter shut himselfup for some weeks, and when he returned to

* H z = X iy, and lo = w in, is an analytic function of 2
,

Rieniann’s equations are

du ^ ^ ^ 3d

dx ^ 3t/’ ex'

These equations had been given much earlier by Cauchy, and even

Cauchy was not the first, as D’Alembert had stated the aquations in

the eighteenth century.
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the society of his friends said (referring to the newly published

papers of Cauchy), “This is a new mathematic”.’

Riemann spent two years at the University of Berlin. During

the political upheaval of 1848 he served with the loyal student

corps and had one weary spell of sixteen hours’ guard duty
protecting the jittery if sacred person of the king in the royal

palace. In 1849 he returned to Gottingen to complete his mathe-

matical training for the doctorate. His interests were unusually

broad for the pure mathematician he is commonly rated to be,

and in fact he devoted as much of his time to physical science

as he did to mathematics.

From this distance it seems as though Riemann’s real interest

was in mathematical physics, and it is quite possible that had
he been granted twenty or thirty more years of life he would
have become the Xewton or Einstein of the nineteenth century.

His physical ideas were bold in the extreme for his time. Not
till Einstein realized Riemann’s dream of a geometrized (macro-

scopic) physics did the physics which Riemann foreshadowed -

somewhat obscurely, it may be - appear reasonable to physi-

cists. In this direction his only understanding follower till our

own century was the English mathematician William Kingdon
Clifford (1845-79), who also died long before his time.

During his last three semesters at Gottingen Riemann
attended lectures on philosophy and followed the course of

Wilhelm Weber in experimental physics with the greatest

interest. The philosophical and psychological fragments left by
Riemann at his death show that as a philosopliical thinker he

was as original as he was in mathematics and science. "Weber

recognized Riemann’s scientific genius and became his warm
Mend and helpful counsellor. To a far higher degree than the

majority of great mathematicians who have written on phy-

sical science, Riemann had a feeling for what is important - or

likely to be so - in physics, and this feeling is no doubt due to

his work in the laboratory and his contact with men who were

primarily phj^sicists and not mathematicians. The contribu-

tions of even great pmre mathematicians to physicsal science

have usually been characterized by a singular irrelevance so

fax as the universe observed by scientists is concerned. Riemann^
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as a physical mathematician, lisras in the same class as Xewton,

Gauss, and Einstein in his instinct for what is likely to be of

scientific use in mathematics.

As a sequel to his philosophical studies with Johann Friedrich

Herbart (1776-1841), Riemann came to the conclusion in 1850

(he was then twenty-four) that ‘a complete, well-rounded

mathematical theory can be established, which progresses from

the elementary laws for individual points to the processes given

to us in the plenum (“continuously jfilled space”) of reality,

without distinction between gravitation, electricity, magnet-

ism, or thermostatics’. This is probably to be interpreted as

Riemann’s rejection of all ‘action at a distance’ theories in

physical science in favour of field theories. In the latter the

physical properties of the ‘space’ surroxmding a ‘charged

particle’, say, are the object of mathematical investigation.

Riemann at this stage of his career seems to have believed in a

space-filling ‘ether’, a conception now abandoned. But as will

appear from his epochal work on the foundations of geometry,

he later sought the description and correlation of physical

phenomena in the geometry of the ‘space’ of human experience.

This is in the current fashion, which rejects an existent, unob-

servable ether as a cumbersome superfluity.

Fascinated by his work in physics, Riemann let his pure

mathematics slide for a while and in the autumn of 1850 joined

the seminar in mathematical physics which had just been

founded by Weber, Ulrich, Stem, and Listing. Physical experi-

ments in this seminar consumedthe timethat scholarlyprudence

would have reserved for the doctoral dissertation in mathe-

matics, which Riemann did not submit till he was twenty-five.

One of the leaders in the seminar, Johann Benedict Listing

(1808-82), may be noted in passing, as he probably influenced

Riemann's thought in what was to be (1857) one of his greatest

achievements, the introduction of topologicalmethods into the

theory of functions of a complex variable.

It win be recalled that Gauss had prophesied that analysis

situs would become one of the most important fields of mathe-

matics, and Riemann, by his inventions in the theory of func-

tions, was to give a partial fulfilment of this prophecy. Although
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topology (now called analysis situs) as first developed bore but

little resemblance to the elaborate theory which to-day absorbs

all the energies of a prolific schools it may be of interest to state

the tri\ial puzzle which apparently started the whole vast and

intricate theory. In Eulers time seven bridges crossed the river

Pregel in Konigsberg, as in the diagram, the shaded bars repre-

senting the bridges. Euler proposed the problem of crossing all

seven bridges without passing twice over any one. The problem

is impossible.

The nature of Riemann’s use of topological methods in the

theory of functions may be disposed of here, although an ade-

quate description is out of the question in untechnical language.

For the meaning of ^uniformity" with respect to a function of a

complex variable we must refer to what was said in the chapter

on Gauss. Now, in the theory of Abelian functions, muliiform

functions present themselves inevitably; an n-vatued function

of s is a function which, except for certain values of z, takes

precisely n distinct values for each value assigned to s, Rlus-

trating multiformity, or many-valuedness, for functions of a real

variable, we note that y, considered as a function of jj, defined

by the equation = ar, is two-valued. Thus, if x = 4, we get

y- = 4, and hence 2^
= 2or — 2;ifa3is any real number except

zero or ‘infinity’
, y has the two distinct values of V«r and — Vir.

In this simplest possible example y and x are connected by an

algebraic equation, namely — an = 0. Passing at once to the

general situation of which this is a very special case, we might

543



MEN OF MATHEMATICS

discuss the n-valued function y ^rhich is defined, as a function

of X, by the equation

PiW" -i- . . - + P„-t{x)y ^ P^{x) = 0,

in which the P's are polynomials in x. This equation defines y as

an n-valued function of x. As in the case of y- — ai = 0, there

will be certain values of x for which two or more of these n

values of y are equal. These values of x are the so-called branch

points of the n-valued function defined by the equation.

All this is now extended to functions of complex variables,

and the function w (also its integral) as defined by

P,(z)^- -r -r . . . + + P^{z) = 0,

in which s denotes the complex variable s -f it, where s, t are

real variables and i = V — 1. The n values of w are called the

branches of the function w. Here we must refer (chapter on

Gauss) to what was said about the representation of uniform

functions of z. Let the variable 2 (= s -f- ii) trace out any path

in its plane, and let the uniform function / (s) be expressed in

the form U -f iV, where U, V are functions of s, t Then, to

every value of z will correspond one, and only one, value for

each of U,V, and, as z traces out its path in the s, i-plane, / (z)

will trace out a corresponding path in the U, F-plane : the path

of / (
2) will be uniquely determined by that of 2. But if a? is a

multiform (many-valued) function of s, such that precisely n

distinct values of w are determined by each value of 2 (except

at branch points, where several values ofw may be equal), then

it is obvious that one re-plane no longer suffices (if n is greater

than 1) to represent the path, the ‘march’ of the function ro. In

the case of a /reo-valued function w, such as that determined by
= Zy two m-planes would be required and, quite generally, for

an n-valued function {n finite or infinite), precisely n such rn-

planes would be required.

The advantages of considering uniform (one-valued) func-

tions instead of n-valued functions (n greater than 1) should be

obvious even to a non-mathematician. What Riemann did was

this: instead of the n. distinct zr-planes, he introduced an n-

sheeted surface, of the sort roughly described in what follows,
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on which the rmilUform function is uniJoTm, that is, on which

to each ‘place* on the surface corresponds one, and only one,

value of the function represented.

Riemann united, as it were, ail the n planes into a single plane,

and he did this by what may at first look like an inversion of the

representation of the n branches of the n-valued function on n
distinct planes; but a moment’s consideration will show that,

in efiect, he restOTed uniformity. For he superimposed n s-planes

on one another; each of these planes, or sheets, is associated

with a particular branch of the function so that, as long as z

moves in a particular sheet, the corresponding branch of the

function is traversed by td (the n-valued function of z under

discussion), and as passes from one sheet to another, the

branches are changed, one into another, until, on the variable z

ha\'ing traversed all the sheets and having returned to its

initial position, the original branch is restored. The passage of

the variable z from one sheet to another is effected by means of

cuts (which may be thought of as straight-line bridges) joining

branch points; along a given cut providing passage from one

sheet to another, one ‘lip’ of the upper sheet is imagined as

pasted or joined to the opposite lip of the under sheet, and

similarly for the other lip of the upper sheet. Diagrammatically,

in cross-section,

The sheets are not joined along cuts (which may be drawn in

many ways for given branch points) at random, but are so

joined that, as s: traverses its n-sheeted surface, passing from

one sheet to another as a bridge or cut is reached, the analytical

behaviour of the function of s is pictured consistently, parti-

cularly as concerns the interchange of branches consequent on

the variable z, if represented on a plane, having gone completely
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round a branch point. To this circuiting ofa branch point on the

single 2-plane corresponds, on the n-sheeted Riemann surface

the passage from one sheet to another and the resultant inter-

change of the branches of the function.

There are many ways in which the variable may wander

about the n-sheeted Riemami surface, passing from one sheet to

another. To each of these corresponds a particular interchange

of the branches of the function, which may be symibolized bv

writing, one after another, letters denoting the several branches

interchanged. In this way we get the sjmibols of certain

substituiions (as in chapter 15) on n letters; all of these substitu-

tions generate a group which, in some respects, pictures the

nature of the function considered.

Riemann surfaces are not easy to represent pictoriallj", and

those w’ho use them content themselves with diagrammatical

representations of the connexion of the sheets, in much the

same way that an organic chemist writes a ‘graphical* formula

for a complicated carbon compound which recalls in a schematic

manner the chemical behaviour of the compound but which

does not, and is not meant to, depict the actual spatial arrange-

ment of the atoms in the compound. Riemann made wonderful

advances, particularly in the theory of Abelian functions, by

means of his surfaces and their topology - how shall the cuts be

made so as to render the n-sheeted surface equivalent to a

plane, being one question in this direction. But mathematicians

are like other mortals in their ability to visualize complicated

spatial relationships, namely, a high degree of spatial ''intuition’

is excessively rare.

Early in November, 1851, Riemann submitted his doctoral

dissertation, Grnndlagen fiir eine allgemeine Theorie der Funk-

tionen einer veranderlichcn complexen Grdsse (Foundations for a

general theory of functions of a complex variable), for Gauss*

consideration. This work by the young master of twenty-five

was one of the few modem contributions to mathematics that

roused the enthusiasm of Gauss, then an almost legendary

figure within four years of his death- When Riemann called on

Gauss, after the latter had read the dissertation. Gauss told him

that he himself had planned for years to write a treatise on the
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same topic. Gauss’ ofEleial report to the Philosophical Faculty

of the University of Gottingen is noteworthy as one of the rare

formal pronouncements in which Gauss let himself go.

"The dissertation submitted by Herr Riemann offers con-

vincing evidence of the author s thorough and penetrating

investigations in those parts of the subject treated in the disser-

tation, of a creative, active, truly mathematical mind, and of a

gloriously fertile originality. The presentation is perspicuous

and concise and, in places, beautiful. The majority of readers

would have preferred a greater clarity of arrangement. The

whole is a substantial, valuable work, which not only satisfies

the standards demanded for doctoral dissertations, but far

exceeds them.'

A month later Riemann passed his final examination, in-

cluding the formality of a public ‘defence’ of his dissertation.

All went ofi successfully, and Riemann began to hope for a posi-

tion in keeping with his talents. ‘I believe I have improved my
prospects with my dissertation’, he wrote to his father; ‘I hope

also to learn to write more quickly and more fluently in time,

especially if I mingle in society and if I get a chance to give

lectures; therefore am I of good courage.’ He also apologizes to

his father for not having gone after a vacant assistantship at the

Gottingen Observatory more energetically, but as he hopes to

be ‘habilitated’ as a Privatdozent the outlook is not as dark as

it might be.

For his HabilitatioJisschrift (probationary essay) Riemann

had planned to submit a memoir on trigonometric series

(Fourier series). But two and a half years were to pass before he

might hang out his sign as an unpaid university instructor

picking up what he could in the way of fees from students not

bound to attend bis lectures. During the autumn of 1852 Rie-

mann profited by Dirichlet’s presence in Gottingen on a vaca-

tion and sought his advice on the embryonic memoir, Rie-

mann’s friends saw to it that the young man met the famous

mathematician from Berlin - second ody to Gauss — socially.

Dirichlet was captivated by Riemann’s modesty and genius*

‘Next morning [after a dinner party] Dirichlet was with me for

two hours,’ Riemann wrote his father. ‘He gave me the notes
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I needed for my probationary essay; otherwise I should have
had to spend many hours in the library in laborious research.

He also read over my dissertation with me and was verv
friendly - which I could hardly have expected, considering the

great distance in rank between us. I hope he will remember me
later on.’ During this visit of Dirichlet’s there were excursions

with Weber and others, and Riemann reported to his father

that these human escapes from mathematics did him more
good scientifically than if he had sat all day over his hooks.

From 1853 (Riemann was then twenty-seven) onward he
thought intensively about mathematical physics. By the end
of the year he had completed the probationary" essay, after

many delays due to his growing passion for physical science.

There was still a trial lecture ahead of him before he could be
appointed to the coveted - but unpaid - lectureship. For this

ordeal he had submitted three titles for the faculty to choose

from, hoping and expecting that one of the first two, on which
he had prepared himself, would he selected. But he had mcau-
tiously included as his third offering a topic on which Gauss had
pondered for sixty years or more - the foundations of geometry
- and this he had not prepared. Gauss no doubt was curious to

see what a Riemann’s ‘gloriously fertile originality’ would make
of such a profound subject. To Riemann’s consternation Gauss

designated the third topic as the one on which Riemann should

prove his mettle as a lecturer before the critical faculty. ‘So I

am again in a quandary,’ the rash young man confided to his

father, ‘since I have to work out this one. I have resumed my
investigation of the connexion between electricity, magnetism,
light, and gravitation, and I have progressed so far that I

publish it "without a qualm. I have become more and more
convinced that Gauss has worked on this subject for years, and
has talked to some friends (Weber among others) about it. I

tell you this in confidence, lest I be thought arrogant — I hope
it is not yet too late for me and that I shall gain recognition as

an independent investigator.’

The strain of carrying on two extremely difficult investiga-

tions simultaneously, while acting as Weber’s assistant in the

seminar in mathematical physics, combined with the usual
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handicaps of povert\% brought on a temporary breakdown* ‘I

became so absorbed in my investigation of the unity of all

physical laws that when the subject of the trial lecture was
given me, I could not tear myself away from my research.

Then, partly as a result of brooding on it, partly from staying

indoors too much in this vile weather, I fell iU; my old trouble

recurred with great pertinacity and I could not get on with my
work. Only several weeks later, when the weather improved and

I got more social stimulation, I began feeling better. For the

summer I have rented a house in a garden, and since doing so

my health has not bothered me. Having finished two weeks

after Easter a piece of work I could not get out of, I began at

once working on my trial lecture and finished it around Pente-

cost [that is, in about seven weeks]. I had some difficulty in

getting a date for my lecture right away and almost had to

return to Quickborn without having reached my goal. For

Gauss is seriously iU and the physicians fear that his death is

imminent. Being too weak to examine me, he asked me to wait

till August, hoping that he might improve, especially as I

would not lecture anyhow till fall. Then he decided an3rway on

the Friday after Pentecost to set the lecture for the next day at

eleven-thirty. On Saturday I was happily through with every-

thing.’

This is Riemann's own account of the historic lecture which

was to revolutionize difierential geometry and prepare the way
for the geometrized physics of our own generation. In the same

letter he tells how the work he had been doing around Easter

turned out. 'VVeber and some of his collaborators ‘had made
very exact measurements of a phenomenon which up till then

had never been investigated, the residual charge in a Leyden

jar [after discharge it is found that the jar is not completely

discharged] ... I sent him [one of Weber’s collaborators,

Kohlrausch] my theory of this phenomenon, having worked it

out specially for his purposes. I had found the explanation of

the phenomenon through my general investigations of the con-

nexion between electricity, light, and magnetism. ... This

matter was important to me, because it was the first time I

could apply my work to a phenomenon stall unknown, and I
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hope that the publication [of it] mil contribute to a favourable

reception of my larger work,’

The reception of Riemann’s probationary lecture (10 June

1854) was as cordial as even he could have wished in the scared

secrecy of Ms modest heart. The lecture had made him sweat

blood to prepare because he had determined to make it intelli-

gible even to those members of the faculty who had but little

knowledge of mathematics. In addition to being one of the

great masterpieces of all mathematics, Riemann’s essay Cher

die Hifpothesen, uoelche der Geometrie zu Grunde liegen (On the

hypotheses which lie at the foundations of geometry), is also a

classic of presentation. Gauss was enthusiastic. ‘Against all

tradition he had selected the tMrd of the three topics submitted

by the candidate, wishing to see how such a difficult subject

would be handled by so young a man. He was surprised beyond

all his expectations, and on returning from the faculty meeting

expressed to Wilhelm Weber Ms Mghest appreciation of the

ideas presented by Riemann, speaking with an enthusiasm

that, for Gauss, was rare.’ '\That little can be said here about

tMs masterpiece will be reserved for the conclusion of the

present chapter.

After a rest at home with Ms family in Quickbom, Riemann

returned in September to Gottingen, where he delivered a

hastily prepared lecture (sitting up most of the night to get it

ready on short notice) to a convention of scientists. His topic

was the propagation of electricity in non-conductors. During

the year he continuedMs researches in the mathematical theory

of electricity and prepared a paper on Nobili’s colour rings

because, as he wrote Ms sister Ida: ‘TMs subject is important,

for very exact measurements can be made in connexion with it,

and the laws according to wMch electricity moves can be

tested.’

In the same letter (9 October 1854) he expresses Ms un-

bounded joy at the success of his first academic lecture and his

great satisfaction at the unexpectedly large number of auditors.

Eight studentshad come tohear him! He had anticipated at the

most two or three. Encouraged by tMs unhoped-for popularity,

Riemann tells Ms father, T have been able to hold my classes
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regularly. My first diffidence and constraint have subsided

more and more, and I get accustomed to think more of the

auditors than of myself, and to read in their expressions whether

I should go on or explain the matter further.’

When Dirichlet succeeded Gauss in 1855, Eiemann’s friends

urged the authorities to appoint Riemann to the security of an
assistant professorship, but the finances of the University" could

not be stretched so far. Nevertheless he was granted the equi-

valent of 200 dollars a year, which was better than the uncer-

tainty of half-a-dozen voluntary students’ fees. His future

worried him, and when presently he lost both his father and his

sister Clara, making it impossible for him to escape for vaca-

tions to Quickbom, Riemann felt poor and miserable indeed.

His three remaining sisters went to live with the other brother,

a postal clerk in Bremen whose salary was princely beside that

of the ‘economically valueless’ mathematician.

The following year (1856; Riemann was then thirty) the out-

look brightened a little. It was impossible for a creative genius

like Riemann to be downed by despondency so long as he had
the wherewithal to keep body and soul together in order that

he might work. To this period belong part of his characteristi-

cally original work on Abelian functions, his classic on the

hypergeometric series (see chapter on Gauss) and the differ-

ential equations - of great importance in mathematical physics

- suggested by this series. In both of these works Riemann
struck out on new directions of his own. The generality, the

irduitivmesSi of his approach was peculiarly his own. His work
absorbed all his energies and made him happy in spite of

material worries; possibly, too, the fatal optimism of the con-

sumptive was already at work in him.

Riemann’s development of the theory of Abelian functions is

as unlike that of Weierstrass as moonlight is unlike sunlight.

Weierstrass’ attack was methodical, exact in all its details, like

the advance of a perfectly disciplined army imder a generalship

that foresees everything and provides for all contingencies.

Riemann, for his part, looked over the whole field, seeing

everything but the details, which he left to take care of them-

selves, and was content to have grasped the key positions of the
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general topography in his imagination. The method of Weier-

strass was arithmetical, that of Riemann geometricjal and intui-

tive. To say that one is ‘better’ than the other is meaningless;

both cannot be seen from a common point of \iew.

Overwork and lack of reasonable comforts brought on a

nervous breakdown early in his thirty-first year, and Riemann
was forced to spend a few weeks with a friend in the Harz
mountain country, where he was joinedby Dedekind. The three

took long tramps together into the mountains and Riemann
soon recovered. Relieved of the strain of having to keep up

academic appearances, Riemann indulged his sense of humour
and kept his companions amused with his spontaneous wit.

They also talked shop together- most mathematicians do when
they get together, just as lawyers or doctors or business men do,

pro\dded they do not have to talk drivel to maintain the social

conventions. One evening after a strenuous hike Riemann
dipped into Brewster's life of Newton and discovered the letter

to Bentley in which Newton himself asserts the impossibil%

of action at a distance without intervening media. This de-

lighted Riemann and inspired him to an impromptu lecture.

To-day the ‘medium’ which Riemann extolled is not the lumini-

ferous ether, but his own ‘cur\"ed space’, or its reflexion in the

space-time of relativity.

At last, in 1857, at the age of thirty-one, Riemann got his

assistant professorship. EQs salary was the equivalent of about

300 dollars a year, hut as he had had little all his life he missed

less. However, a real disaster presently descended on him: his

brother died and the care of three sisters fell to his lot. It

figured out at exactly seventy-five dollars a year for each of

them. Love on nothing a year in a cottage may be paradise;

existence on next to nothing in a university community is just

plain hell. It was but little different in Riemann’s day. No
wonder he contracted consumption. However, the Lord, who
had so generously given, shortly relieved Riemann of his

youngest sister, IVIarie, so the individual budgets skyrocketed

to 100 dollars a year. If rations had to be watched, affection was

free, and Riemann was more than repaid for his sacrifices by the

self-cpnfidenee inspired in him by his sisters’ devotion and
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encouragement. The Lord may have known that if ever a

stniggling mortal needed encouragement, poor Riemann did;

still, it seems rather an odd way ofproviding what was required.

In 1S5S Riemann produced his paper on electrodjmamics, of

which he told his sister Ida, ‘My discovery concerning the close

connexion between electricity and light I have dedicated to the

Royal Society [of Gottingen]. From what I have heard, Gauss

had devised another theory regarding this dose connexion,

di^erent from mine, and communicated it to his intimate

friends. However, I am fully convinced that my theory is the

correct one, and that in a few years it win be recognized as such.

As is known, Gauss soon withdrew his memoir and did not

publish it; probably he himself was not satisfied with it.’

Riemann would seem here to have been over-optimistic; Clerk

Maxwell’s electromagnetic theory is the one which to-day holds

the field - in macroscopic phenomena. The present status of

theories of light and the electromagnetic field is too complicated

to be described here; it is sufficient to note that Riemann’s

theory has not survived.

Dirichlet died on 5 May 1859. He had always appreciated

Riemann and had done his best to help the struggling young

man along. This interest of Dirichlet’s and Riemann’s rapidly

mounting reputation caused the government to promote

Riemann to succeed Dirichlet. At thirty-three Riemann thus

became the second successor of Gauss. To ease his domestic

difficulties the authorities let him reside at the Observatory, as

Gauss had done. Recognition of the sincerest kind - praise from

mathematicians who, although older than himself, were in some

degree his rivals - now came in abundance. On a visit to Berlin

he was feted by Borchardt, Kummer, Kronecker, and Weier-

strass. Learned societies, including the Royal Society of

London and the French Academy of Sciences, honoured him

with membership, and in short he got the usual highest distinc-

tions that can come to a man of science. A visit to Paris in 1860

acquainted him with the leading French mathematicians,

particularly Hermite, whose admiration for Riemann was

unbounded. This year, 1860, is memorable in the history of

mathematical physics as that in which Riemann began inten-
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geometry. Clifford was no servile copyist but a man with a
brillianth* original mind of Ms own, ofwhom it may be said, as

Newton said of Cotes, ‘If he had lived we might have known
something.’ The reader who is acquainted with any of the better

available popular accounts of relativistic physics and the wave
theory of electrons wOl recognize several curious adumbrations

of current theories in Clifford’s brief prophecy.

‘Biemann has shown that as there are different Mnds of lines

and surfaces, so there are different kinds of space of three

dimensions; and that we can only find out by experience to

which of these kinds the space in wMch we live belongs. In

particular, the axioms of plane geometry are true within the

limits of experiment on the surface of a sheet of paper, and yet

we know that the sheet is really covered with a number of smafi

ridges and furrows, upon wMch (the total curvature being not

zero) these axioms are not true. Similarly, he says, although the

axioms of solid geometry are true within the limits of experi-

ment for finite portions of our space, yet we have no reason to

conclude that they are true for very small portions; and if any

help can be got thereby for the explanation of physical pheno-

mena, we may have reason to conclude that they are not true

for very small portions of space.

‘I wish here to indicate a manner in which these speculations

may be applied to the investigation of physical phenomena. I

hold in fact

(1) That small portions of space are in fact of a nature analo-

.

gous to little hills on a surface which is on the average flat;

namely, that the ordinary laws of geometry are not valid in

them.

(2) That tMs property of being curved or distorted is con-

tinually being passed on from one portion of space to another

after the manner of a wave.

(3) That tMs variation of the curvature of space is what

really happens in that phenomenon wMch we call the motion of

maMet, whether ponderable or ethereal.

(4) That in the physical world nothing else takes place hut

this variation, subject (possibly) to the law of continuity.

am endeavouring in a g^eral way to explain the laws of
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double refraction on this hypothesis, hut have not yet arrived

at any results sufficiently decisive to he communicated,’

Riemann also believed that his new geometry woxiid prove of

scientific importance, as is shown hy the conclusion of his

memoir (Clifford’s translation):

'Either therefore the reality which underlies space must form

a discrete manifold, or we must seek the ground of its metric

relations outside it, in binding forces which act upon it.

'The answer to these questions can only be got by starting

from the conception of phenomena which has hitherto been

justified by experience, and which Newton assumed as a foun-

dation, and by making in this conception the successive changes

required by facts which it cannot explain.’ And he goes on to

say that researches like his own, starting from general notions,

‘can be useful in preventing this work from becoming hampered

by too narrow views, and progress of knowledge of the inter-

dependence of things from being checked by traditional

prejudices.

•This leads us into the domain of another science, that of

physics, into which the object of this work does not allow us to

go to-day.’

Riemann’s work of 1854 put geometry in a new light. The
geometry he visions is non-Euclidean, not in the sense of

Lobatchewsky and Johann Bolyai, nor in that of Riemann’s

own elaboration of the hypothesis of the obtuse angle (as

explained in chapter 16), but in a more comprehensive sense

depending on the conception of measurement. To isolate

measure-TelatioTis as the nerve ofRiemann’ s theory is to do it an

injustice; the theory contains much more than a workable

philosophy of metrics, but this is one of its main features. No
paraphrase of Riemann’s concise memoir can bring out all that

is in it; nevertheless, we shall attempt to describe some of his

basic ideas, and we shall select three: the concept of a manifold,

the definition of distance, and the notion of curcature of a

manifold.

A manifold is a class of objects (at least in common mathe-

matics) which is such that any member of the class can be

completely specified by assigning to it certain numbers, in a
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defiLnite order, corresponding to ‘numberable’ properties of the

elements, the assignment in the given order corresponding to a

preassigned ordering of the ‘numberable’ properties. Granted

that this may be even less comprehensible than Riemann's

definition, it is nevertheless a 'working basis from which to

start, and all that it amoiints to in plain mathematics is this:

a manifold is a set of ordered ‘n-tuples’ of numbers
,

where the parentheses, (), indicate that the numbers

a: 1,332, . . are to be written in the order given. Two such

K-tuples, . . . ,
and ... , 2/J are equal when, and

only when, corresponding numbers in them are respectively

equal, namely, when, and only when, — 2^2 = »

= 2/n-

If precisely n numbers occur in each of these ordered n-tuples

in the manifold, the manifold is said to be of n dimensions. Thus

we are back again talking co-ordinates with Descartes. If each

of the numbers in . . . ,
is a positive, zero, or negative

integer, or if it is an element of any countable set (a set whose

elements may he counted ofi 1,2,3, . .
. ), and if the like holds for

every n-tuple in the set, the manifold is said to be discrete. If

the numbers x^,x»i ... , a3„, may take on values continuously

(as in the motion of a point along a line), the manifold is

continuous.

This working definition has ignored - deliberately - the ques-

tion of whether the set of ordered n-tuples is ‘the manifold’ or

whether something "represented by’ these is ‘the manifold’.

Thus, when we say (x,y) are the co-ordinates of a point in a

plane, we do not ask what ‘a point in a plane’ is, but proceed to

work with these ordered couples of numbers {x,y) where x,y run

through all real numbers independently. On the other hand it

may sometimes be advantageous to fix our attention on what

such a symbol as {x,y) represents. Thus if a? is the age in seconds

of a man and y his height in centimetres, we may be interested

in the man (or the class of all men) rather than in his co-ordinates

miih which alone the mathematics of our enquiry is concerned. In

this same order of ideas, geometry is no longer concerned with

what ‘space’ ‘is’ - whether ‘is’ means anything or not in relation

to ‘space’. Space, for a modem mathematician, is merely a
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number-manifold of the kind described above, and this con-

ception of space grew out of Riemann’s ‘manifolds’.

Passing on to measurement, Riemann states that ‘Measure-

ment consists in a superposition of the magnitudes to be com-
pared. If this is lacking, magnitudes can be compared only

when one is part of another, and then only the more or less, but

not the how much, can be decided.’ It may be said in passing

that a consistent and useful theory ofmeasurement is at present

an urgent desideratum in theoretical physics, particularly in all

questions where quanta and relativity are of importance.

Descending once more from philosophical generalities to less

mystical mathematics, Riemann proceeded to lay down a defi-

nition of distance^ extracted from his concept of measurement,
which has proved to be extremely fruitful in both physics and
mathematics. The Pythagorean proposition

that a = 6® + or a = where a is the length of the

longest side of a right-angled triangle and b,c are the lengths of

the other two sides, is the fundamental formula for the measure-
ment of distances in a plane. How shall this be extended to a
curved surfaced To straight hnes on the plane correspond geode-

sies (see chapter 14) on the surface; but on a sphere, for

example, the Pythagorean proposition is not true for a right-

angled triangle formed by geodesics. Riemann generalized the

Pythagorean formula to any manifold as follows:

Let (aii,aj 2 ,
. . . , a?„}, {x^ + -f ajg', . . . , -f a?/) be the

co-ordinates of two ‘points’ in the manifold which are ‘infinite-

simally near’ one another. For our present purpose the meaning
of ‘infinitesimally near’ is that powers higher than the second of

> • . • ? which measure the ‘separation’ of the two
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points in the manifold, can he neglected. For simplicity we shall

state the definition when n = 4 - giving the distance between
two neighbouring points in a space of four dimensions: the

distance is the square root of

+ -f gl^iSSi + gi^PHiOS^'

4” gz^z'^z^ 4“ g^ 4p^Z^\

4-

in which the ten coefficients ... ,^34 are functions of

For a particular choice of the g’s, one 'space' is

defined. Thus we might ha%^e = 1, = 1, = 1, ===

— 1, and all the other g’s zero; or we might consider a space in

which all the g’s except ^44 and ^34 were zero, and so on. A space

considered in relativity is of this general kind in which all the

g’s except gii,g22>^333^44 zero, and these are certain simple

expressions invohdng

In the case of an n-dimensional space the distance between

neighbouring points is defined in a similar manner; the general

expression contains J72(w -{- 1) terms. The generalized Pytha-

gorean formula for the distance between neighbouring points

being given, it is a solvable problem in the integral calculus to

find the distance between any two points of the space, A space

whose metric (system of measurement) is defined by a formula

of the type described is called Riemannian.

Curvature, as conceived by Riemann (and before him hy

Gauss; see chapter on the latter) is another generalization from

common experience. A straight line has zero curvature; the

^measure’ of the amount by which a curved line departs from

straightness may be the same for every point of the curve (as it

is for a circle), or it may vary from point to point of the curve,

when it becomes necessary again to express the ‘amount of

curvature’ through the use of infimtesimals. For curv^ed sur-

faces, the curvature is measured similarly by the amount ci

departure from a plane, which has zero curvature. This may be

generalized and made a little more precise as follows. For sim-

plicity we state first the situation for a two-dimensional space,
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namely for a surface as we ordinarily imagine surfaces. It is

possible from the formula

expressing (as before) the square of the distance between neigh-

bouring points on a given surface (determined when the func-

tions iivgiztizz given), to calculate the measure ofcurvature

of any point of the surface wholly in terms of the given functions

giiigi2sg22' ^ ordinary language, to speak of the ‘curva-

ture' of a space of more than two dimensions is to make a

meaningless noise. Nevertheless Riemann, generalizing Gauss,

proceeded in the same mathematical way to build up an expres-

sion involving all the g’s in the general case of an n-dimensional

space, which is of the same kind mathematically as the Gaussian

expression for the curvature of a surface, and this generalized

expression is what he called the measure of curvature of the

space. It is possible to exhibit visual representations of a curved

space of more than two dimensions, but such aids to perception

are about as useful as a pair of broken crutches to a man with

no feet, for they add nothing to the understanding and they are

mathematically useless.

Why did Riemann do all this and what has come out of it?

Not attempting to answer the first, except to suggest that

Riemann did what he did because his daemon drove him, we

may briefly enmnerate some of the gains that have accrued

from Riemann’s revolution in geometrical thought. First, it put

the creation of ‘spaces’ and ‘geometries’ in unlimited number

for specific purposes - use in dynamics, or in pure geometry, or

in physical science - within the capabilities of professional geo-

meters, and it baled together huge masses of important geo-

metrical theorems into compact bundles that could he handled

easily as wholes. Second, it clarified our conception of space, at

least so far as mathematicians deal in ‘space’, and stripped that

mystic nonentity Space of its last shred of mystery- Biemann’s

achievement has taught mathematicians to disbelieve in any

geometry, or in any space, as a necessary mode of human per-

ception. It was the last nail in the coffin of absolute space, and

the first in that ofthe ‘absolutes’ of nineteenth-centuiy physics,
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Finally, the curvature whicb Riemann defined, tlie processes

wMch he de\ised for the investigation of quadratic diterential

fonns {those giving the forniula for the square of the distaiicE'

hetween neighhouring points in a space of any numher of

diiiiensions), and his recognition of tne fact that the cirrvatiiie.

is an invariant (in the technical sense explained in, pre\ioiis

chapters), all found their physical interpretations in the theow

of reiatimty. "V^Tiether the latter is in its final form or not is

beside the point; since relathdty our outlook on physical science

is not what it was before. Without the work of Riemann this

revolution in scientific thought would have been impossible-

unless some later man had created the concepts and the mathe-

matical methods that Riemann created.



CHAPTER TWENTY-SEVEX

ARITHMETIC THE SECOND

Kummer ; Dedekind

It is a curious fact that although arithmetic - the theory of

numbers - has been the fertile mother of more profound pro-

blems and powerful methods than any other discipline of

mathematics, it is usually regarded as standing rather to one

side of the main progress as a more or less cold-blooded spec-

tator of the flashier achievements of geometry and anabasis,

particularly in their services to physical science, and compara-

tively few of the great mathematicians of the past 2,000 years

have expended their more serioTis efforts on the advancement

of the science of ‘pure number’.

Many causes have determined this strange neglect of what,

after all, is mathematics par excellence. Among these we need

note only the following: arithmetic at present is on a higher

plane of intrinsic difficulty than the other great fields of mathe-

matics; the immediate applications of the theory of numbers

to science are few and not readily perceptible to the ordinary

run of creative mathematicians, although some of the greatest

have felt that the proper mathematics of nature will be found

ultimately in the behaviour of the common whole numbers;

and, finally, it is only human for mathematicians - at least for

some, even the great - to court reputation and popularity in

their own generation by reaping the easier harvests of a spec-

tacular success in analysis, geometry, or applied mathematics.

Even Gauss succumbed, to his keen regret in middle life.

Modem arithmetic - after Gauss - began with Kummer. The

origin of Kummer’s theory in his attempt to prove Fermat’s

Last Theorem has already been noted (Chapter 25). Something

of the man's long life may be told before we pass to Dedeldnd.

Kummer was a typical German of the old school with all the
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blunt simplicity, good nature, and racy humour, ^hidi
characterized that fast-vanishing species at its best. Museum
specimens, aged in the wood, could be foimd behind the bar in

any San Francisco German beer garden a generation ago.

Although Ernst Eduard Kummer (29 January 1810-14 Slav

1893) was bom only five years before the deflation of Napoleo^
the glorious Emperor of the French played an important if

unwitting part in Hummer's life. The son of a physician of

Sorau (then in the principality of Brandenburg), Geimanv,

Kummer at the age of three lost his father: the lousy remnant

of Napoleon’s Grand Army, filtering back through Germany to

France, brought with it the characteristically Russian gift of

typhus, which it shared freely with the well-washed Germans.

The overworked physician caught the disease, died of it, and

left Ernst and an elder brother to the care of his widow. Young
Kummer grew up in cramping poverty, but Ms struggling

mother contrived somehow or another to see her sons through

the local Gymnasium. The arrogance and exactions of the

Napoleonic French, no less than the memory of his father,

which the mother kept alive, made young Kummer an ex-

tremely practical patriot, and it was with real gusto that he

devoted much of his superb scientific talent in later life to

traimug German army officers in ballistics at the war college of

Berlin, Many of his students gave good accounts of themselves

in the Franco-Prussian War.
At the age of eighteen (in 1828) Kummer was sent by his

mother to the University of Halle to study theology and other-

wise fit himself for a career in the church. Owing to his poverty

Kummer did not reside at the University, but tramped back

and forth every day from Sorau to Halle with his food and

books in a knapsack on his back. Regarding his theological

studies Kummer makes the interesting observation that it is

more or less a matter of accident or environment whether a

mind with a gift for abstract speculation turns to philosophy or

to mathematics. The accident in his own case was the presence

at Halle ofHemrich Ferdinand Scherk (1798-1885) as professor

of mathematics. Scherk was rather old-fashioned, but he had

an enthusiasm for algebra and the theory of numbers which he
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imparted to young Kummer. Under Scherk’s guidance Kummer
soon abandoned his moral and theological studies in favour of

mathematics. Echoing Descartes^ Kummer said he preferred

mathematics to philosophy because ‘mere errors and false views

cannot enter mathematics.’ Had Kummer lived till to-day he

might have modified his statement, for he was a broadminded

man, and the present philosophical tendencies in mathematics

are sometimes curiously reminiscent of medieval theology. In

his third year at the University Kummer solved a prize problem

in mathematics and was awarded his Ph.D. degree (10 Sep-

tember 1831) at the age of twenty-one. No university position

being open at the time, Kummer began his career as a teacher

in his old Gymnasium.

In 1832 he'moved to Liegnitz, where he taught for ten years

in the Gymnasium. It was there that he started Kronecker off

on his revolutionary career. Fortunately Kummer was not so

hard up as Weierstrass under similar circumstances and was

able to afford postage for scientific correspondence. The eminent

mathematicians (including Jacobi) with whom Kummer shared

his mathematical discoveries saw to it that the young genius of

a school teacher was lifted into a more suitable position at the

earliest opportunity, and in 1842 Kummer was appointed

Professor of Mathematics at the University of Breslau. He
taught there till 1855, when the death of Gauss caused exten-

sive revisions in the mathematical map of Europe.

It had been assumed that Dirichlet was contented at Berlin,

then the mathematical capital of the world. But when Gauss

died, Dirichlet could not resist the temptation of succeeding the

Prince of Mathematicians and his own former master as pro-

fessor at Gottingen. Even to-day the glory of being a ‘successor

of Gauss’ has an almost irresistible attraction for mathemati-

cians who might easily earn more money in other positions, and

until quite recently GSttingen could choose whom it would.

The high esteem in which Kummer was held by his fellow

mathematicians can be judged by the fact that he was the

unanimous choice to succeed Dirichlet at Berlin. Since the age

of twenty-nine he had been a corresponding member of the

Royal Berlin Academy. He now (1855) succeeded IMriehlet in

565



MEN OF MATHEMATICS

botli the University and the Academy, and was also appointed

professor at the Berlin War College.

Knmmer was one of those rarest of all scientific geniuses who

are first class in the most abstract mathematics, the applica-

tions of mathematics to practical affairs, including war, which

is the most unblushingly practical of all human idiocies, and

finally in the ability to do experimental phj-sies of a high degree

of excellence. His finest work was in the theory of numbers

where his profound originality led him to inventions of the very

first order of importance, but in other fields - analysis, geome-

try, and applied physics - he also did outstanding work.

Although Kummer’s advance in the higher arithmetic was of

the pioneering sort that justifies comparing him with the

creators of non-Euelidean geometry, we somehow get the

impression, on reviewing his life of eighty-three years, that

splendid as bis achievement was, he did not accomplish all that

he must have had in him. Possibly his lack of personal ambition

ion instance is given presently), his easy-going geniality, and

his broad sense of humour prevented him from winding himself

in an attempt to beat the record.

The nature of what Kummer did in the theory of numbers

has been described in the chapter on Kronecker: he restored the

fundamental theorem of arithmetic to those algebraic number fields

which arise in the attempt to prove Fermat*s Last Theorem and in

the Gaussian theory of cyclotomy, and he effected this restoration

by the creation of an entirely new species of numherSy his so-called

Hdeal numbers*. He also carried on the work of Gauss on the law

of biquadratic reciprocity and sought the laws of reciprocity for

degrees higher than the fourth.

As has already been mentioned in preceding chapters, Rum-

mer’s ‘ideal numbers’ are now largely displaced by Dedekind’s

‘ideals’, which will be described when we come to them, so it is

not necessary to attempt here the almost impossible feat of

explaining in untechrdcal language what Kummer’s ‘numbers’

are. But what he accomplished by means of them can be stated

with sufficient accuracy for an account like the present: Rum-

mer ^proved that ^ = 2®', where p is a prime, is impossible

in integers all different from zoro, for a whole very exten-
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sive class of primes p. He did not succeed ia proving Fermat’s

theorem for all primes; certam slippery ‘exceptional primes’

eluded Kummer’s net - and still do. Nevertheless the step ahead

which he took so far surpassed everything that all his prede-

cessors had done that Kummer became famous almost in spite

of himself. He was awarded a prize for which he had not

competed.

The report in full of the French Academy of Sciences on the

competitition for its ‘Grand Prize’ in 1857 ran as follows.

‘Report on the competition for the grand prize in mathematical

sciences. Already set in the competition for 1853 and prorogued

to 1856. The committee, having found no work which seemed to

it worthy of the prize among those submitted to it in competi-

tion, proposed to the Academy to award it to M. Kummer,
for his beautiful researches on complex numbers composed of

roots of unity* and integers. The Academy adopted this

proposal.’

Kummer’s earliest work on Fermat’s Last Theorem is dated

October 1835. This was followed by further papers in 1844-47,

the last of which was entitled Proof of Fermafs Theorem on the

ImpossiMliiy o/ai^ -f for an Infinite^ Number of Primes

p. He continued to add improvements to his theory, including

its application to the laws of higher reciprocity, till 1874, when
he was sixty-four years old.

Although these highly abstract researches were the field of

his greatest interest, and although he said of himself, *To

* If atp -f yp = s?', then ajp= sp — yp, and resohing sp — yo into its

p factors of the first degree, we

asP = (s-y) (=-r®y) . .
.
(s-rp-^y),

in which r is a ‘pth root of unity’ (other than 1), namely tp — 1 = 0,

with r not equal to 1. The algebraic integers in the field of degree p
generated by r are those which Kummer introduced into the study of

Fermat's equation, and which led him to the invention of his ‘ideal

numbers’ to rt^tore unique factorization in the field - an int^er in

such a field is not uniquely the product of primes in the field for aU

primes p.

f The ‘infinite’ in Kummer’s title is still (1936) unjustified; ‘many’

should be put for ‘infinite*.
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describe my personal scientific attitude more exactly, I may
conveniently designate it as theoretical . . . ; I have particularlv

striven for that mathematical knowledge which finds its proper

sphere in mathematics without reference to applications,’

Kummer was no narrow specialist. Somewhat like Gauss, he

appeared to take equal pleasure in both pure and applied

science. Gauss indeed, through his works, was Kummer's real

teacher, and the apt pupil proved his mettle by extending his

master's work on the h\^ergeometric series, adding to what

Gauss had done substantial developments which to-day are of

great use in the theory of those differential equations which

recur most frequently in mathematical physics.

Again, the magnificent work of Hamilton on systems of rays

(in optics) inspired Kummer to one of his own most beautiful

inventions, that of the surface of the fourth degree which is

known by his name and which plays a fundamental part in the

geometry of EucKdean space when that space is four-dimen-

sional (instead of three-dimensional, as we ordinarily imagine

it), as happens when straight lines instead of points are taken

as the irreducible elements out of which the space is con-

structed. This surface (and its generalizations to higher spaces)

occupied the centre of the stage in a whole department of nine-

teenth-century geometry; it was found (by Cayley) to be repre-

sentable (parametrically - see the chapter on Gauss) by means

of the quadruple periodic functions to which Jacobi and Her-

inite devoted some of their best efforts.

Quite recently (since 1934) it has been observed by Sir Arthur

Eddington that Kummer’s surface is a sort of cousin to Dirac’s

wave equation in quantum mechanics (both have the same

finite group; Rummer’s surface is the wave surface in space of

four dimensions).

To complete the circle, Kummer was led back by his study of

systems of rays to physics, and he made important contribu-

tions to the theory of atmospheric refraction. In his work at the

War College he astonished the scientific world by proving him-

self a first-rate experimenter in his work on ballistics. With

characteristic humour Kummer excused himself for this bad

fall from mathematical grace; *When Z attack a problem expen-
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mentally,’ lie told a young friend, ‘it is a proof that the problem

is mathematically impregnable.’

Remembering his own struggles to get an education and his

mother’s sacrifices, Kummer was not only a father to his stu-

dents but something of a brother to their parents. Thousands of

grateful young men who had been helped on their way by
Kummer at the University of Berlin or the War College

remembered him all their lives as a great teacher and a great

friend. Once a needy young mathematician about to come up
for his doctor’s examination was stricken with smallpox and
had to return to his home in Posen near the Russian border. No
word came from him, but it was known that he was desperately

poor. When Kummer heard that the young man was probably

unable to afford proper care, he sought out a friend of the

student, gave him the requisite money and sent him off to Posen

to see that what was necessary was done. In his teaching

Kummer was famous for his homely similes and philosophical

asides. Thus, to drive home the importance of a particular

factor in a certain expression, he observed that ‘K you neglect

this factor you will be like a man who in eating a plum swallows

the stone and spits out the pulp.’

The last nine years of Kummers life were spent in complete

retirement. ‘Nothing wiU be found in my posthumous papers,’

he said, thinking of the mass of work which Gauss left to be

edited after his death. Surrounded by his family (nine children

survived him), Kummer gave up mathematics for good when
he retired, and except for occasional trips to the scenes of his

boyhood lived in the strictest seclusion. He died after a j^ort

attack of influenza on 14 May 1893, aged eighty-three.

Rummer’s successor in arithmetic was Julius Wilhelm

Richard Dedekind (he dropped the first two names when he

grew up), one of the greatest mathematicians and one of the

most original Germany - or any other country - has produced.

Like Kummer, Dedekind had a long life (6 October 1831-12

February 1916), and he remained mathematically active to

within a short time of his death. When he died m 1916 Dade-

kind had been a mathematical classic for well over a generation.

As Edmimd Landau (himself a friend and follower of Dedekind
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in some of his work) said in his commemorative address to the

Royal Society of Gottingen in 1917 ; "Richard Dedekind was not

only a great mathematician, but one of the wholly great in the

history of mathematics, now and in the past, the last hero of a
great epoch, the last pupil of Gauss, for four decades himself a

classic, from whose works not only we, but our teachers and the

teachers of our teachers, have drawn.’

Richard Dedekind, the youngest of the four children of Julius

Levin Ulrich Dedekind, a professor of law, was bom in Bruns-

wick, the natal place of Gauss.* From the age of seven to sixteen

Richard studied at the Gymnasium in his home town. He gave

no early evidence of unmistakable mathematical genius; in fact

his first loves were physics and chemistry, and he looked upon

mathematics as the handmaiden - or scullery slut - of the

sciences. But he did not wander long in darkness. By the age of

seventeen he had smelt numerous rats in the alleged reasoning

of physics and had turned to mathematics for less objectionable

logic. In 1848 he entered the Caroline College - the same institu-

tion that gave the youthful Gauss an opportunity for self-

instruction in mathematics. At the college Dedekind mastered

the elements of analytic geometry, ‘advanced’ algebra, the

calculus, and ‘higher’ mechanics. Thus he was well prepared to

begin serious work when he entered the University of Gottingen

in 1850 at the age of nineteen. His principal instmctors were

Moritz Abraham Stem (1807-94), who wrote extensively on the

theory of numbers, Gauss, and Whhelm 'VVeher the physicist.

* No adequate biography ofDedekind has yet appeared. A life was

to have been included in the third volume of his collected works

(1932), but was not, owing to the death of the editor in chief (Robert

Fricke), The account here is based on Landau’s commemorative

address. Note that, following the good old Teutonic custom of some

German biographers, Landau omits all mention of Dedekind’s

mother. This no doubt is in accordance with the theory of the ‘three

K’s’ propounded by the late Kaiser of GJermany and heartily

endorsed by Adolf Hitler: ‘A woman’s whole duty is comprised in the

three big ICs - Kissing, Koofcing [kooking is spelt with a K in

Germank and Kids,’ Still, one would like to know at least the maiden
name of a great man’s mother.
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From tliese three men Dedekind got a thorough grounding in

the calculus, the elements of the higher arithmetic, least

squares, higher geodesy, and experimental phj^sics.

In later life Dedekind regretted that the mathematical in-

struction available during his student years at Gottingen, while

adequate for the rather low requirements for a state teacher’s

certificate, was inconsiderable as a preparation for a mathe-

matical career. Subjects of living interest were not touched

upon, and Dedekind had to spend two years of hard labour

after taking his degree to get up by himself elliptic functions,

modem geometry, higher algebra, and mathematical physics -

all of which at the time were being brilliantly expounded at

Berlin by Jacobi, Steiner, and Dirichlet. In 1852 Dedekind got

his doctor’s degree (at the age of twenty-one) from Gauss for a

short dissertation on Eulerian integrals. There is no need to

explain what this was: the dissertation was a useful, indepen-

dent piece of work, but it betrayed no such genius as is e\1dent

on every page of Dedeldnd’s later works. Gauss’ verdict on the

dissertation will be of interest: ‘The memoir prepared by Herr

Dedekind is concerned with a research in the integral calculus,

which is by no means commonplace. The author evinces not

only a very good knowledge of the relevant field, but also such

an independence as augurs favourably for his future achieve-

ment. As a test essay for admission to the examination I find

the memoir completely satisfying.’ Gauss evidently saw more
in the dissertation than some later critics have detected;

possibly his close contact with the young author enabled him

to read between the lines. However, the report, even as it

stands, is more or less the usual perfunctory politeness custo-

mary in accepting a passable dissertation, and we do not know
whether Gauss really foresaw Dedeldnd's penetrating oiigm-

ality.

In 1854 Dedekind was appointed lecturer {Pmaidozent) at

Gottingen, a position which he held for four years. On the death

of Gauss in 1855 Dirichlet moved from Berlin to Gottingen.

For the remaining three years of his stay at Gottingen, Dede-

kind attended Dirichlet’s most important lectures. Laterhe was

to edit Dirichlet’s famous treatise on the theory ofnumbers and
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add to it the epoch-making ‘Eleventh Supplement’ containing

an outline of his own theory of algebraic numbers. He also

became a friend of the great Hiemann, then beginning his

career. Dedekind's university lectures were for the most part

elementary, but in 1857-8 he gave a course (to two students.

Selling and Auwers) on the Galois theory of equations. This was

probably the first time that the Galois theory had appeared

formally in a university course. Dedekind was one of the first

to appreciate the fimdamental importance of the concept of a

group in algebra and arithmetic. In this early work Dedekind

already exhibited two of the leading characteristics of his later

thought, abstractness and generality. Instead of regarding a

finite group from the standpoint offered by its representation

in terms of substitutions (see chapters on Galois and Cauchy),

Dedekmd defined groups hy means of their postulates (substan-

tially as described in Chapter 15) and sought to derive their

properties from this distillation of their essence. This is in the

modem manner: abstractness and therefore generality. The

second characteristic, generality, is, as just implied, a conse-

quence of the first.

At the age of twenty-six Dedekind was appointed (in 1857)

ordinary professor at the Zurich polytechnic, where he stayed

five years, returning in 1862 to Brunswick as professor at the

technical high school. There he stuck for half a century. The

most important task for Dedekind’s official biographer - pro-

vided one is unearthed - Aviil be to explain (not explain away)

the singular fact that Dedekind occupied a relatively obscure

position for fiity years while men who were not fit to lace his

dioes filled important and influential university chairs. To say

that Dedekind preferred obscurity U one explanation. Those

who believe it should leave the stock market severely alone, fox

as surely as God made little lambs they will be fleeced.

Till his death (1916) in his eighty-fifth year Dedekind re-

mained fresh ofmind and robust of body. He never married, but

lived with his sister Julie, remembered as a novelist, tfll her

death in 1914, His otlier sister, IMathiJde, died in 1860; his

brother became a distinguished jurist.

Such are the bare facts of any importance in Dedekind’s
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material career. He lived so long that although some of liis

^ork (his theory of irrational numbers, described presently)

had been familiar to all students of analysis for a generation

before his death, he himself had become almost a legend and

many classed him Tdth the shadowy dead. Twelve years before

his death, Teubner's Calendar for Mathematicians listed Dede-

kind as ha\ing died on 4 September 1899, much to Dedekind's

amusement. The day, 4 September, might possibly prove to be

correct, he wrote to the editor, but the year certainly was
wrong. ‘According to my owm memorandum I passed this day

in perfect health and enjoyed a very stimulating conversation

on ’isystem and theory"’ with my luncheon guest and honoured

friend Georg Cantor of HaUe.’

Dedekind’s mathematical activity impinged almost wholly

on the domain of number in its widest sense. We have space for

only two of his greatest achievements and we shall describe

first his fundamental contribution, that of the ‘Dedekind cut",

to the theory of irrational numbers and hence to the founda-

tions of analysis. This being of the very first importance we may
recall briefly the nature of the matter. If a, b are common whole
numbers, the fraction a,& is called a rational number; if no

whole numbers m, n exist such that a certain ‘number’ A is

expressible as min, then A' is called an irrational number. Thiis

V2 , Vs, Vs are irrational numbers. K an irrational number be

expressed in the decimal notation the digits following the

decimal point exhibit no regularities - there is no ‘period’ which

repeats, as in the decimal representations of a rational number,

say 13/11, = 1T8181S . . . , where the ‘18’ repeats indefinitely.

How then, if the representation is entirely lawless, are decimals

equivalent to irrationals to be defined, let alone manipulated?

Have we even any clear conception of what an irrational

number is? Eudoxus thought he had, and Dedekind’s definition

of equality between numbers, rational or irrational, is identical

with that ofEudoxus (see Chapter 2).

Iftwo rational numbers are equal, it is no doubt obvious that

their square roots are equal. Thus 2x3 and 8 are equal; so

also then are V2 x 3 and V6- But it is not obvious that V2 X

Vs = V2 X 3, and hence that V2 X V3 V6. The un^
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ob\dousness of this simple assumed equality, V2 x Vs = ye,
taken for granted in school arithmetic, is evident if '^e visualize

what the equality implies: the ‘lawless’ square roots of 2, 3 , q

are to be extracted, the first two of these are then to be multi-

plied together, and the result is to come out equal to the third.

As not one of these three roots can be extracted exactly, no

matter to how many decimal places the computation is carried,

it is clear that the verification by multiplication as just de-

scribed will never be complete. The whole human race toiling

incessantly through all its existence could never prove in this

way that V2 X Vs = Vd. Closer and closer approximations

to equality would be attained as time went on, but finalitv

would continue to recede. To make these concepts of ‘approxi-

mation’ and ‘equality’ precise, or to replace our first crude

conceptions of irrationals by sharper descriptions which will

obviate the difficulties indicated, was the task Dedekind set

himself in the early 1870’s - his work on Continuity and

Irrational Numbers was published in 1872.

The heart of Dedekind’s theory of irrational numbers is his

concept of the ‘cut’ or ‘section’ (Schniuy. a cut separates aU

rational numbers into too classes, so that each number in the

first class is less than each number in the second class ; every such

cut which does not ‘correspond’ to a rational number ‘defines’

an irrational number. This bald statement needs elaboration,

particularly as even an accurate exposition conceals certain

subtle difficulties rooted in the theory of the mathematical

infinite, which will reappear when we consider the life of

Dedekind’s friend Cantor.

Assume that some rule has been prescribed which separates

all rational numbers into txo dasses, say an ‘upper’ class and a

‘lower’ class, such that each number in the l&wer class is less than

every number in the upper class. (Such an assumption would

not pass unchallenged to-day by all schools of mathematical

philosophy. However, for the moment, it may be regarded as

unobjectionable.) On this assumption one of three mutually

exclusive situations is possible.

(A) There may be a number in the lower class which is grecdei

than every other number in that class.
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(B) There may be a number in the tipper class which is less

than every other number in that class.

(C) yeither of the numbers (greatest in [A], least in [B])

described in (A), (B) may exist.

The possibility which leads to irrational numbers is (C), For

if (C) holds, the assumed rule ‘defines’ a definite break or ‘cut’

in the set of all rational numbers. The upper and lower classes

strive, as it were, to meet. But in order for the classes to meet

the cut must be filled with some ‘number’, and, by (C), no such

filling is possible.

Here we appeal to intuition. All the distances measured from

any fixed point along a given straight line •correspond’ to

‘numbers’ which ‘measure’ the distances. If the cut is to be left

unfilled, we must picture the straight line, which we may con-

ceive of as having been traced out by the continuous motion of

a point, as now having an unbridgeable gap in it. This violates

our intuitive notions, so we say, by definition, that each cut

does define a number. The number thus defined is not rational,

namely it is irrational. To provide a manageable scheme for

operating with the irrationals thus defined by cuts (of the kind

[C] )
we now consider the lower class of raiionals in (C) as being

equivalent to the irrational which the cut defines.

One example will suffice. The irrational square root of 2 is

defined by the cut whose upper class contains all the positive

rational numbers whose squares are greater than 2, and whose

lower class contains all other rational numbers.

If the somewhat elusive concept of cuts is distasteful two

remedies may be suggested: devise a definition of irrationals

which is less mystical than DedeMnd’s and fully as usable;

follow Kronecker and, denying that irrational numbers exist,

reconstruct mathematics without them. In the present state of

mathematics some theory of irrationals is convenient. But,

from the verj^ nature of an irrational number, it would seem to

be necessary to understand the mathematical infinite

thoroughly before an adequate theory of irrationals is

possible. The appeal to infinite classes is ob^dous m Dede-

kind’s definition of a cut. Such classes lead to serious logical

difficulties.
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It depends upon the indi\idual mathematician’s level of

sophistication ^whether he regards these difficulties as relevant

or of no consequence for the consistent development of mathe-

matics. The courageous analyst goes boldly ahead, piling one

Babel on top of another and trusting that no outraged god of

reason mil confound him and all his works, while the critical

logician, peering cynically at the foundations of his brother's

imposing skyscraper, makes a rapid mental calculation pre-

dicting the date of collapse. In the meantime all are busy and

all seem to be enjoying themselves. But one conclusion appears

to be inescapable: without a consistent theory of the mathe-

matical infinite there is no theory of irrationals; without a

theory of irrationals there is no mathematical analysis in any

form even remotely resembling what we now have; and finally,

without analysis the major part of mathematics - including

geometry and most of applied mathematics - as it now exists

would cease to exist.

The most important task confronting mathematicians would

therefore seem to he the construction of a satisfactory theory of

the infinite. Cantor attempted this, with what success will be

seen later. As for the Dedekind theory of irrationals, its author

seems to have had some qualms, for he hesitated over two years

before venturing to publish it. If the reader wiU glance back at

Eudoxus’ definition of ‘same ratio’ (Chapter 2) he will see that

^infinite difficulties’ occur there too, specifically in the phrase

‘any whatever equimultiples’. Nevertheless some progress has

been made since Eudoxus wrote; we are at least beginning to

understand the nature of our difficulties.

The other outstanding contribution which DedeMnd made

to the concept of ‘number’ was in the direction of algebraic

numbers. For the nature of the fundamental problem con-

cerned we must refer to what was said in the chapter on

Kronecker concerning algebraic number fields and the resolu-

tion of algebraic integers into their prime factors. The crux of

the matter is that in seme such fields resolution into prime

factors is not unique as it is in common arithmetic; Dedekind

restored this highly desirable uniqueness by the invention of

what he called ideals. An ideal is not a number, but an infinite
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class of numbers, so again Dedekind overcame his difficulties by

taking refuge in che infinite.

The concept of an ideal is not hard to grasp, although there

is one twist - the more inclusive class divides the less inclusive, as

will be explained in a moment - which shocks common sense.

However, common sense was made to be shocked; had we

nothing less dentable than shock-proof common sense we

should be a race of mongoloid imbeciles. An ideal must do at

least two things: it must leave common (rational) arithmetic

substantially as it is, and it must force the recalcitrant alge-

braic integers to obey that fundamental law of arithmetic -

unique decomposition into primes - which they defy.

The point about a more inclusive class di\ndmg a less inclu-

sive refers to the following phenomenon (and its generalization,

as stated presently). Consider the fact that 2 divides 4 - anth >

metically, that is, without remainder. Instead of this ob\dous

fact, which leads nowhere if followed into algebraic number

fields, we replace 2 by the class of all its integer multiples, . . . ,

_ 8^ — _ 4, — 2, 0, 2, 4, 6, 8, ... As a matter of convenience

we denote this class by (2). In the same way (4) denotes the

class of all integer multiples of 4. Some of the numbers in (4)

aie . . . ,
- 16, -12, -8,-4, 0 , 8, 12, 16, ... It is now

obvious that (2) is the more inclusive class; in fact (2) contains

aR the numbers in (4) and in addition (to mention only two) — 6

and 6. The fact that (2) contains (4) is symbolized by writing

(2)1(4). It can be seen quite easily that if m, n are any common

whole numbers then (m)
|

(n) when, and only when, m divides n.

This might suggest that the notion of common arithmetical

divisibility be replaced by that of class inclusion as just

described. But this replacement would be futile if it f^ed to

preserve the characteristic properties of arithmetical divisi-

bility. That it does so preserve them can be seen in detail, but

one instance must suffice. Ifm divides n, and n divides I, then

m divides I - for example, 12 divides 24 and 24 di\ides 72, and

12 does in ffict divide 72. Transferred to classes, as above, this

becomes: if (m)
j

(») and (n)
|

(Z), then (m)
j

(Z) or, in English, if

the (»i) contains the class (n), and if the class (n) contams

the class (Q, then the class (m) contains the class (1) - which
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obviously is true. The upshot is that the replacement of nuift.

bers by their corresponding classes does what is required wiicn

we add the dejanition of ‘multiplication’
:
(m) x (n) is defined to

be the class (mn); (2) x (6) = (12). Notice that the last is a

definition; it is not meant to follow from the meanings of (ijtj

and (n).

Dedekind’s ideals for algebraic numbers are a generalizaticm

of what precedes. Following his usual custom Dedekind gave

an abstract definition, that is, a definition based upon essentia

properties rather than one contingent upon some particular

mode of representing, or picturing, the thing defined.

Consider the set (or class) of all algebraic integers in a given

algebraic number field. In this all-inclusive set will be subsets.

A subset is called an ideal if it has the two following properties,

A. The sum and difference of any two integers in the subset

are also in the subset.

B. If any integer in the subset be multiplied by any integei

in the all-inclusive set, the resulting integer is in the subset.

An ideal is thus an infinite class of integers. It will be seen

readily that (m), (n), ... ,
previously defined, are ideals accord-

ing to A, B. As before, if one ideal contains another, the fiisl

is said to divide the second.

It can be proved that every ideal is a class of integers all d

which are of the form

where ... » are Ju&ed integers of the field of degree*

concerned, and each of ajj, ... , may be any integer what-

ever in the field. This being so, it is convenient to symbolize ai

ideal by exhibiting only the fixed integers, Uj, Ogj • • • > ^
this is done by writing (a^, » a^) as the symbol of th(

ideal. The order in which a ... , are written in the

symbol is immaterial.

‘Multiplication’ of ideals must now be defined: the product di

the two ideals (fli, . . . , (hi, ... > h^) is the ideal whoa

symbol is (flihi, . . . , • • • > ^ which all possibit*

products, etc., obtained by multiplying an integer in the!

first symbol by an integer in the second occur. For example, the
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product of (fli, and &.>) is {a-pi, ajbi, aj)^. It is

alTS-ays possible to reduce any such product-symbol (for a field

of degree t?) to a symbol containing at most n integers.

One final short remark completes the synopsis of the story.

An ideal whose symbol contains hut one integer, such as (Gj), is

called 2l

-

principal ideal. Using as before the notation {a-^ ' (b^)

to signify that (a^) contains (6^), we can see without difficulty

that (ai)
i
(hi) u:hen, and only when^ the integer a-^ divides the

integer by As before, then, the concept of arithmetical di^dsi-

bility is here - for algebraic integers - completely equivalent to

that of class inclusion. A prim^ ideal is one which is not ‘divi-

sible by’ - included in ~ any ideal except the all-inclusive ideal

which consists of all the algebraic integers in the given field.

Algebraic integers being now replaced by their corresponding

principal ideals, it is proved that a given ideal is a product of

prime ideals in one way only, precisely as in the ‘fundamental

theorem of arithmetic’ a rational integer is the product of

primes in one way only. By the above equivalence of arith-

metical divisibility for algebraic integers and class inclusion,

the fundamental theorem of arithmetic has been restored to

integers in algebraic number fields.

Anyone who will ponder a little on the foregoing bare outline

of Dedekind’s creation will see that what he did demanded

penetrating insight and a mind gifted far above the ordinary

good mathematical mind in the power of abstraction. Dedekmd
was a mathematician after Gauss’ own heart: ^At nostro guidem

judicio hujusmodi veritates ex notionibus potius quam ex noia-

tionibus hauriri debeanf (But in our opinion such truths

[arithmetical] should be derived from notions rather than from

notations). Dedekmd always relied on his head rather than on

an ingenious symbolism and expert manipulations of formulae

to get him forward. If ever aman put notions into mathematics,

Dedekmd did, and the wisdom of his preference for creative

ideas over sterile symbols is now apparent although it may not

have been during his lifetime. The longer mathematics lives the

more abstract - and therefore, possibly, also the more practical

- it becomes.



CHAPTER TWE^'TY-EIGHT

THE LAST UNIVERSALIST

Poincare

Ix the History of his Life and Times the astrologer William

Lilly (1602-81) records an amusing - if incredible - aeeount of

the meeting between John Napier (1550-1617), of Merchiston,

the inventor of logarithms, and Henry Briggs (1561-1631) of

Gresham College, London, who computed the first table of

common logarithms. One John IVIarr, ‘an excellent mathemati-

cian and geometrician’, had gone ‘into Scotland before Mr

Briggs, purposely to be there when these two so learned persons

should meet. ]Vlr Briggs appoints a certain day when to meet m
Edinburgh; but failing thereof, the lord Napier was doubtful he

would not come. It happened one day as John IVIarr and the

lord Napier were speaking of Mr Briggs; “Ah John (said Mer-

chiston), IVir Briggs will not now come.” At the very moment

one knocks at the gate; John Marr hastens down, and it proved

hlr Briggs to his great contentment. He brings Mr Briggs up

into my lord’s chamber, where almost one quarter of an km
tjoas spent, each beholding other with admiration, before one

zvord was spohe.^

Recalling this legend Sylvester tells how he himself went

after Briggs’ world record for flabbergasted admiration when,

in 1885, he called on the author of numerous astonishingly

mature and marv^ellously original papers on a new branch of

analysis which had been swamping the editors of mathematical

ioumals since the early 1880’s.

‘I quite entered into Briggs’ feelings at his inter\dew with

Napier’, Sylvester confesses, ‘when I recently paid a visit to

Poincare [1854r-1912] in his airy perch in the Rue Gay-Lussac,

... In the presence of that mighty reser^^oir of pent-up intel-

lectual force my tongue at first refused its office, and it was not
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until I had taken some time (it may be two or three minutes) to

peruse and absorb as it were the idea of his external youthful

lineaments that I found myself in a condition to speak,’

Elsewhere Sylvester records his bewilderment when, after

having toiled up the three flights of narrow stairs leading to

Poincare's ‘airy perch’, he paused, mopping his magnificent

bald head, in astonishment at beholding a mere boy, *so blond,

so young', as the author of the deluge of papers which had

heralded the advent of a successor to Cauchy.

A second anecdote may give some idea of the respect in

which Poincare’s w’ork is held by those in a position to appre-

ciate its scope. Asked by some patriotic British brass hat in the

rabidly nationalistic days of World War I ~ when it was
obligatory on all academic patriots to exalt tbeir aesthetic allies

and debase their boorish enemies - who was the greatest man
France had produced in modem times, Bertrand Russell

answered instantly, ‘Poincare.’ ‘What! That man?’ his unin-

formed interlocutor exclaimed, believing Russell meant Ray-

mond Poincare, President of the French Republic. ‘Oh,’ Russell

explained when he imderstood the other’s dismay, ‘I was
fhmldng of Raymond’s cousin, Henri Poincare.’

Poincare was the last man to take practically all mathe-

matics, both pure and applied, as his province. It is generally

believed that it would be impossible for any human being

starting to-day to xmderstand comprehensively, much less do

creative work of high quality in more than two of the four main
divisions of mathematics - arithmetic, algebra, geometry,

analysis, to say nothing of astronomy and mathematacal

physics. However, even in the 1880’s, when Poincare’s great

career opened, it was commonly thought that Gauss was the

last of the mathematical universalists, so it may not prove

impossible for some future Poincare once more to cover the

entire field.

As mathematics evolves it both expands and contracts,

somewhat like one of Lemaitre’s models of the universe. At

present the phase is one of explosive expansion, and it is quite

impossible for any man to familiarize himself with the entire

inchoate mass of mathematics that has been dumped on the
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world since the year 1900. But already in certain important

sectors a most welcome tendency towards contraction is plainly

apparent. This is so, for example, in algebra, where the whole-

sale introduction of postulational methods is making the sub-

ject at once more abstract, more general, and less disconnected.

Unexpected similarities - in some instances amounting to

disguised identity - are being disclosed by the modem attack,

and it is conceivable that the next generation of algebraists will

not need to know much that is now considered valuable, as

many of these particular, difScult things will have been sub-

sumed under simpler general principles of wider scope. Some-

thing of this sort happened in classical mathematical physics

when relativity put the complicated mathematics of the ether

on the shelf. ^

Another example of this contraction in the midst of expan-

sion is the rapidly growing use of the tensor calculus in prefer-

ence to that of numerous special brands of vector analysis.

Such generalizations and condensations are often hard for older

men to grasp at first and frequently have a severe struggle to

sur\dve, but in the end it is usually realized that general

methods are essentially simpler and easier to handle than

miscellaneous collections of ingenious tricks devised for special

problems. When mathematicians assert that such a thing as

the tensor calculus is easy ~ at least in comparison with some

of the algorithms that preceded it - they are not trying to

appear superior or mysterious but are stating a valuable truth

which any student can verify for himself. This quality of inclu-

sive generality was a distinguishing trait of Poincare’s vast

output.

If abstractness and generality have obvious advantages of

the kind indicated, it is also true that they sometimes have

serious drawbacks for those who must be interested in details.

Ofwhat immediate use is itto a working physicist to know that

a particular differential equation occurring in his work is solv-

able, because some pure mathematician has proved that it is,

when neither he nor the mathematician can perform the Her-

culean laboiur demanded by a numerical solution capable of

application to specific problems?
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To take an example from a field in vrliich Poincare did some

of his most original work, consider a homogeneous, incompres-

sible fluid mass held together by the gra\dtation of its particles

aPxd rotating about an axis. Under what conditions will the

motion be stable and what will be the possible shapes of such a

stably rotating fluid? MacLatirin, Jacobi, and others proved

that certain ellipsoids will be stable; Poincare, using more

intuitive, ‘less arithmeticar methods than his predecessors,

once thought he had determined the criteria for the stability of

a pear-shaped body. But he had made a slip. His methods were

not adapted to numerical computation and later workers,

including G. H. Darwin, son of the famous Charles, undeterred

by the horrific jungles of algebra and arithmetic that must be

cleared out of the way before a definite conclusion can be

reached, undertook a decisive solution.*

The man interested in the evolution of binary stars is more

comfortable if the findings of the mathematicians are presented

to him in a form to which he can apply a calculating machine.

And since E^necker’s fiat of ‘no construction, no existence’,

some pure mathematicians themselves have been less enthu-

siastic than they were in Poincare’s day for existence theorems

which are not constructive. Poincare's scorn for the kind of

detail that users of mathematics demand and must have before

they can get on with their work was one of the most important

contributory causes to bis universality. Another was his extra-

ordinarily comprehensive grasp of all the machinery of the

theory of functions of a complex variable. In this he had no

equal. And it may be noted that Poincare turned his universa-

lity to magnificent use in disclosing hitherto unsuspected con-

nexions between distant branches of mathematics, for example

between (continuous) groups and linear algebra.

This famous question of the ‘piriform body’, of considerable

importance in cosmogony, was apparently settled in 1905 by liapou-

noff, whose conclusion was confirmed in 1915 by Sir James Jeans;

they found that the motion is unstable. Few have had the courage to

check the calculations. After 1915 Leon Lichtenstein, a fellow-

countryman of liapounoff, made a general attack on the problem of

rotating fluid masses. The problem seems to be unlucky; both L’s

had violent deaths.

H-M.—von. u K 583



MEN OF MATHEMATICS

One more characteristic of Poincare’s outlook must be recalled

for completeness before \ve go on to his life: few mathematicians

have had the breadth of philosophical vision that Poincare badj

and none is his superior in the gift of clear exposition. Probably

he had always been deeply interested in the philosophical

implications of science and mathematics, but it was only in

1902, when his greatness as a technical mathematician was

established beyond all cavil, that he turned as a side-interest to

what may be called the popular appeal of mathematics and let

himself go in a sincere enthusiasm to share with non-profes-

sionals the meaning and human importance of his subject.

Here his liking for the general in preference to the particular

aided him in telling intelligent outsiders what is of more than

technical importance in mathematics without talking down to

his audience. Twenty or thirty years ago workmen and shop-

girls could be seen in the parks and cafes of Paris avidly^ reading

one pr other of Poincare’s popular masterpieces in its cheap

print and shabby paper cover. The same works in a richer

format could also be foimd - well thumbed and evidently read-

on the tables of the professedly cultured. These hooks were

translated into English, German, Spanish, Hungarian, Swedish,

and Japanese. Poincare spoke the universal languages of

mathematics and science to all in accents which they recog-

nized. His style, peculiarly his own, loses much by translation,

Por the literary excellence of his popular writings Poincar^

was accorded the highest honour a French writer can get, mem-

bership in the literary section of the Institut. It has been some-

what spitefully said by envious novelists that Poincar^ achieved

this distinction, unique for a man of science, because one of the

functions of the (literary) Academy is the constant compilation

of a definitive dictionary of the French language, and the

universal Poincaxd was obviously the man to help out the poets

and grammarians in their struggle to tell the world what auto-

morphic functions are. Imi)artial opinion, based on a study of

Poincare’s writings, agrees that the mathematician deserved no

less than he got.

Closely allied to his interest in the philosophy ofmathematies

was Poincare’s preoccupation with the psychology of math©-
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matical creation. How do mathematicians make their disco-

veries? Poincare will tell us later his own observatiotts on this

mystery in one of the most interesting narratives of personal

discovery that was ever written. The upshot seems to be that

mathematical discoveries more or less make themselves after

a long spell of hard labour on the part of the mathematician.

As in literature - according to Dante Gabriel Rossetti - ‘a

certain amount of fundamental brainwork’ is necessary before

a poem can mature, so in mathematics there is no discovery

irithout preliminary drudgery, but this is by no means the

whole story. All ‘explanations’ of creativeness that fail to

provide a recipe whereby a gifted human being can create are

open to suspicion. Poincare’s excursion into practical psycho-

logy, like some others in the same direction, failed to bring back

the Gk>lden Fleece, but it did at least suggest that such a thing

is not wholly mythical and may some day be found when

human beings grow intelligent enough to understand their own

bodies.

Poincare’s intellectual heredity on both sides was good. We
shall not go farther back than bis paternal grandfather. During

the Napoleonic campaign of 1814 this grandfather, at the early

age of twenty, was attached to the military hospital at Saint-

Quentin. On settling in 1817 at Rouen he married and had two

sons: Leon Poincare, bom in 1828, who became a first-rate

physician and a member ofa medical faculty; and Antoine,who

rose to the inspector-generalship of the department of roads

and bridges. Leon’s son Henri,bom on 29 April 1854, at Nancy,

Lorraine, became the leading mathematician of the early

twentieth century; one of Antoine’s two sons, Rajnnond, went

in for law and rose to the presidency of the French Republic

dyrringr World War I; Antoine’s other son became director of

secondary education. A great-unde who had followed Napoleon

into Russia disappeared and was never heard of after the

Moscow fiasco.

From this distinguished list it might be thought that H^iri

would have exhibited some administrative ability, but he did

not, except in bis early childhood when he freely invented

political games for his sister and young friends to pia-y* la these
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games he was always fair and scrupulously just, seeing that

each of his playmates got his or her full share of office-holding.

This perhaps is conclusive evidence that ‘the child is father to

the man’ and that Poincare was constitutionally incapable of

imderstanding the simplest principle of administration, which

his cousin Raymond applied intuitively.

Poincare’s biography was written in great detail by his fellow

countryman Gaston Darboux (1842-1917), one of the leading

geometers of modem times, in 1913 (the year following Poin-

care’s death). Something may have escaped the present writer,

but it seems that Darboux, after ha\Tng stated that Poincare’s

mother ‘coming from a family in the Meuse district whose

[the mother’s] parents lived in Arrancy , was a very good person,

very active and very intelligent’, blandly omits to mention her

maiden name. Can it he possible that the French took over the

doctrine of ‘the three big K’s’ - noted in connexion with Dede-

Idnd - from their late instructors after the kultural drives of

Germany into France in 18T0 and 1914? However, it can he

deduced" from an anecdote told later by Darboux that the

famOy name tnay have been Lannois. We learn that the mother

devoted her entire attention to the education of her two

yoimg children, Henri and his younger sister (name not men-

tioned). The sister was to become the wife of fimile Boutroux

and the mother of a mathematician (who died young).

Owingpartly to his mother’s constant care, Poincare’s mental

development as a child was extremely rapid. He learned to talk

very early, but also very badly at first because he thought more

rapidly than he could get the words out. From infancy his

motor co-ordination was poor. When he learned to write it was

discovered that he was ambidextrous and that he could write

or draw as badly with his left hand as with his right. Poincari

never outgrew this physical awkwardness. As an item of some

interest in this connexion it may be recalled that when Poincari

was acknowledged as the foremost mathematician and leading

popularizer of science of his time he submitted to the Binet

tests and made such a disgraceful showing that, had he been

judged as a child instead of as the famous mathematician he

was, he would have been rated -by the tests - as an imbecile.
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At the age of five Henri suffered a bad setback from diph-

theria which left him for nine months with a paralyzed larjmx.

This misfortune made him for long delicate and timid, but it

also turned him back on his own resources as he was forced to

shun the rougher games of children his own age.

His principal diversion was reading, where his unusual talents

first showed up. A book once read- at incredible speed- became
a permanent possession, and he could always state the page and

line where a particular thing occurred. He retained this power-

ful memory all his life. This rare faculty, which Poincare shared

with Euler who had it in a lesser degree, might be called visual

or spatial memory. In temporal memory - the ability to recall

with uncanny precision a sequence of events long passed — he

was also unusually strong. Yet he unblushingly describes his

memory as 'badh His poor eyesight perhaps contributed to a

third peculiarity of his memory. The majority of mathemati-

cians appear to remember theorems and formulae mostly by

eye; with Poincare it was almost wholly by ear. Unable to see

the board distinctly when he became a student of advanced

mathematics, he sat back and listened, following and remem-

bering perfectly without taking notes - an easy feat for him,

but one incomprehensible to most mathematicians. Yet he

must have had a vivid memory of the ‘inner eye’ as well, for

much of his work, like a good deal of Riemann’s, was of the

kind that goes with facile space-intuition and acute \dsualiza-

tion. His inability to use his fingers skilfully of course handi-

capped him in laboratory exercises, which seems a pity, as some

ofhis ownwork in mathematical physics mighthave been closer

to reality had he mastered the art of experiment- Had Poincare

been as strong in practical science as he was in theoretical he

might have made a fourth with the incomparable three,

Archimedes, Newton, and Gauss.

Not many of the great mathematicians have been the absent-

minded dreamers that popular fancy likes to picture them.

Poincare was one of the exceptions, and then only in compara-

tive trifles, such as carrying off hotel linen in his baggage. But

many persons who are anything but absent-minded do the

same, and some of the most alert mortals living have even been
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knoTini to slip restaurant silver into their pockets and get away

with it.

One phase of Poincare’s absent-mindedness resembles some-

thing quite different. Thus (Darboux does not tell the story, but

it should be told, as it illustrates a certain brusqueness of Poiu-

care’s later years), when a distinguished mathematician had

come all the way from Finland to Paris to confer with Poincare

on scientific matters, Poincare did not leave his study to greet

his caller when the maid notified him, but continued to pace

back and forth - as was his custom when mathematicizing - for

three solid hours. All this time the diffident caller sat quietly in

the adjoining room, barred from the master only by flimsy

portieres. At last the drapes parted and Poincare’s buffalo head

was thrust for an instant into the room. ‘Fows me derange

beancoup^ (You are disturbing me greatly), the head exploded,

and disappeared. The caller departed without an interview,

which was exactly what the ‘absent-minded’ professor wanted.

Poincare’s elementary school career was brilliant, although

he did not at first show any marked interest in mathematics.

His earliest passion was for natural history, and all his life he

remained a great lover of animals. The first time he tried out a

rifle he accidentally shot a bird at which he had not aimed. This

mishap affected him so deeply that thereafter nothing (except

compulsory military drill) could induce him to touch firearma.

At the age of nine he showed the first promise ofwhat was to be

one of his major successes. The teacher of French composition

declared that a short exercise, original in both form and sub-

stance, which young Poincare had handed in, was ‘a little

masterpiece’, and kept it as one of his treasures. But he

also advised his pupil to be more conventional - stupider

- if he wished to make a good impression on the schod

examiners.

Being out of the more boisterous games of his schoolfellows,

Poincare invented his own. He also became an indefatigable

dancer. As all Ms lessons came to him as easily as breathing he

spent most of his time on amusements and helping his mothcf

about the house. Even at this early stage ofMs career Poincai^

exhibited some of the more suspicious features of Ms matosEe

dSd



THE LAST UNIVETtSALIST

‘absentmindedness' : he frequently forgot his meals and almost

ne%’er remembered whether or not he had breakfasted. Perhaps

he did not care to stuff himself as most boys do.

The passion for mathematics seized hiin at adolescence or

shortly before (when he was about fifteen). From the first he

exhibited a lifelong peculiarity: his mathematics was done in

his head as he paced restlessly about, and was committed to

paper only when all had been thought through. Talking or other

noise never disturbed him while he was working. In later life he

wrote his mathematical memoirs at one dash without looking

back to see what he had written and limiting himself to but a

very few erasures as he wrote. Cayley also composed in this way,

and probably Euler, too. Some of Poincare’s work shows the

marks of hasty composition, and he said himself that he never

finished a paper without regretting either its form or its sub-

stance. More than one man who has written well has felt the

same. Poincare’s flair for classical studies, in which he excelled

at school, taught him the importance of both form and

substance.

The Franco-Prussian war broke over France in 1870 when
Poincare was sixteen. Although he was too young and too

frail for active service, Poincare nevertheless got his full

share of the horrors, for Nancy, where he lived, was sub-

merged by the full tide of the invasion, and the young boy

accompanied his physician-father on his rounds of the ambu'-

lances. Later he went with his mother and sister, under

terrible difficulties, to Arrancy to see what had happened to his

maternal grandparents, in whose spacious country garden

the happiest days of his childhood had been spent during the

long school vacations. Arrancy lay near the battlefield of Samt-

Privat. To reach the town the three had to pass Mn glacial cold’

through burned and deserted villages. At last they reached their

destination, only to find that the house had been thoroughly

pillaged, *not only of things of value but of things of no value’,

and in addition had been defiled in the bestial manner made
familiar to the French by the 1914 sequel to 1870. The grand-

parents had been left nothing; their evening meal on the day

they viewed the great purging was supplied by a poor woman
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had refused to abandon the ruins of her cottage and who
insisted on sharing her meagre supper with them,

Poincare never forgot this, nor did he ever forget the long

occupation of Nancy by the enemy. It was during the war that

he mastered German. Unable to get any French news, and eager

to learn what the Germans had to say of France and for them-

selves, Poincare taught himself the language. What he had seen

and what he learned from the official accounts of the invaders

themselves made him a flaming patriot for life but, like Her-

mite, he never confused the mathematics of his country’s

enemies with their more practical activities. Cousin Raymond,
on the other hand, could never say anything about les Alle-

mands (the Germans) without an accompanying scream of hate.

In the bookkeeping of heU which balances the hate of one

patriot against that of another, Poincard may be checked off

against Kummer, Hermite against Gauss, thus producing that

perfect zero implied in the scriptural contract *an eye for an eye

and a tooth for a tooth’.

Following the usual French custom Poincare took the

examinations for his first degrees (bachelor of letters, and of

science) before specializing. These he passed in 1871 at the age

of seventeen - after almost failing in mathematics! He had
arrived late and flustered at the examination and had fallen

down on the extremely simple proof of the formula giving the

sum of a convergent geometrical progression. But his fame had

preceded him. *Any student other than Poincare would have

been plucked’, the head examiner declared.

He next prepared for the entrance examinations to the School

of Forestry, where he astonished his companions by capturing

the first prize in mathematics without having bothered to take

any lecture notes. His classmates had previously tested him out,

believinghim to be a trifler, by delegating a fourth-year student

to quiz him on a mathematical difficulty which had seemed

pairticularly tough. Without apparent thought, Poincare gave

the solution immediately and walked off, leaving his crestfallen

baiters asking ‘How does he do it?’ Others were to ask the same

question all through Poincare’s career. He never seemed to

think when a mathematical difficulty was submitted to him by
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his colleagues: ‘The reply came like an arrow’.

At the end of this year he passed first into the ficole Poly-

technique. Several legends of his unique examination survive.

One tells how a certain examiner, forewarned that young Poin-

care was a mathematical genius, suspended the examination for

three-quarters ofan hour in order to devise ‘a “nice” question’ -

a refined torture. But Poincare got the better of him and the

inquisitor ‘congratulated the examinee warmly, telling hiin he

had won the highest grade’. Poincare’s experiences with his

tormentors would seem to indicate that French mathematical

examiners have learned something since they ruined Galois and

came within an ace of doing the like by Hermite.

At the Polytechnique Poincar^ was distinguished for his

brilliance in mathematics, his superb incompetence in ail

physical exercises, including gymnastics and military drill, and

his utter inability to make drawings that resembled anything in

heaven or earth. The last was more than a joke; his score of zero

in the entrance examination in drawing had almost kept him

out of the school. This had greatly embarrassed his examiners:

‘
. a zero is eliminatory. In everything else [but drawing] he is

absolutely without an equal. If he is admitted, it will be as

first; but can he be admitted?’ As Poincare was admitted the

good examiners probably put a decimal point before the zero

and placed a 1 after it.

In spite of his ineptitude for physical exercises Poincar^ was

extremely popular with his classmates. At the end of the year

they organized a public exhibition of his artistic masterpieces,

carefully labelling them in Greek, ‘this is a horse’, and so on -

not always accurately. But Poincare’s inability to draw also

had its serious side when he came to geometry, and he lost first

place, passing out of the school second in rank.

On leaving the Polytechnique in 1875 at the age of twenty-

one Poincare entered the School of Mines with the intention of

becoming an engineer. His technical studies, although faithfully

carried out, left him some leisure to do mathematics, and he

showed what was in him by attacking a general problem in

differential equations. Three years later he presented a thesis,

on the same subject, but concerning a more dfflcult and yet
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more general question, to the Faculty of Sciences at Paris for

the degree of doctor of mathematical sciences, ‘At the first

glance’, says Darhoux, who had been asked to examine the

work, *it was clear to me that the thesis was out of the ordinary

and amply merited acceptance. Certainly it contained results

enough to supply material for several good theses. But, I must

not be afraid to say, if an accurate idea of the way Poincare

worked is wanted, many points called for corrections or expla-

nations. Poincare was an intuitionist. Having once arrived at

the summit he never retraced his steps. He was satisfied to have

crashed through the difficulties and left to others the pains of

mapping the royal roads* destined to lead more easily to the

end. He willingly enough made the corrections and tidying-up

which seemed to me necessary. But he explained to me when I

asked him to do it that he had many other ideas in his head; he

was already occupied with some of the great problems whose

solution he was to give us.’

Thus young Poincare, like Gauss, was overwhelmed by the

host of ideas which besieged his mind but, unlike Gauss, his

motto was not ‘Few, but ripe’. It is an open question whether a

creative scientist who hoards the fruits of his labour so long that

some ofthem go stale does more for the advancement of science

than the more impetuous man who scatters broadcast every-

thing he gathers, green or ripe, to fall where it may to ripen or

rot as wind and weather take it. Some believe one way, some

another. As a decision is beyond the reach of objective criteria

everyone is entitled to his own purely subjective opinion.

Poincare was not destined to become a mining engineer, but

during his apprenticeship he showed that he had at least the

courage of a real engineer. After a mine explosion and fire which

had claimed sixteen victuns he went down at once with tlie

rescue crew. But the calling was uncongenial and he welcomed

the opportunity to become a professional mathematician which

his thesis and other early work opened up to him. His first

academic appointment was at Caen on 1 December 1879, as

* ‘There is no royal road to geometry*, as Menaechmus is said to

have told Alexander the Great when the latter wished to conqaer

geometry in a hurry.
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Professor of Mathematical Analysis. Two years later he was

promoted (at the age of twenty-seven) to the University of

Paris where, in 1886, he was again promoted, taking charge of

the course in mechanics and experimental physics (the last

seems rather strange, in view of Poincare’s exploits as a student

in the laboratory). Except for trips to scientific congresses in

Europe and a visit to the United States in 1904 as an in\dted

lecturer at the St Lnuis Exposition, Poincare spent the rest of

his life in Paris as the ruler of French mathematics.

Poincare's creative period opened with the thesis of 1878 and

closed with bis death in 1912 - when he was at the apex of his

powers. Into this comparatively brief span of thirty-four years

he crowded a mass of work that is sheerly incredible when we
consider the difficulty of most of it. His record is nearly 500

papers on new mathematics, many of them extensive memoirs,

and more than thirty books covering practically all branches of

mathematical physics, theoretical physics, and theoretical

astronomy as they existedm his day. This leaves out of account

his classics on the philosophy of science and his popular essays.

To give an adequate idea of this immense labour one would

have to be a second Poincar^, so we shall presently select two

or three of his most celebrated works for brief description,

apologizing here once for all for the necessary inadequacy.

Poincare’s first succsesses were in the theory of differential

equations, to which he applied ail the resources of the analysis

of which he was absolute master. This early choice for a major

effort already indicates Poincare’s leaning toward the applica-

tions of mathematics, for differential equations have attracted

swarms of workers since the time of Newton chiefly because

they are of great importance in the exploration of the physical

universe, ‘Pure' mathematicians sometimes like to imagine that

all their activities are dictated by their own tastes and that the

applications of science suggest nothing of interest to them.

Nevertheless some of the purest of the pure drudge away their

lives over differential equations that first appeared in the

translation of physical situations into mathematical symbolism,

and it is precisely these practically suggested equations which

ajre the heart of the theory. A particular equation suggested by
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science may be generalized by tbe mathematicians and then be

turned back to the scientists (frequently without a solution in

any form that they can use) to be applied to new physical pro-

blems, but first and last the motive is scientific. Fouriersummed

up this thesis in a famous passage which irritates one type of

mathematician, but which Poincare endorsed and followed in

much of his work.

‘The profound study of nature’, Fourier declared, ‘is the most

fecund source of mathematical discoveries. Not only does this

study, by offering a definite goal to research, have the advan-

tage of excluding vague questions and futile calculations, but

it is also a sure means of moulding analysis itself and discover-

ing those elements in it which it is essential to know and which

science ought always to conserve. These fundamental elements

are those which recur in all natural phenomena,’ To which some

might retort; No doubt, but what about arithmetic in the sense

of Gauss? However, Poincare followed Fourier’s advice

whether he believed in it or not - even his researches in the

theory of numbers were more or less remotely inspired by others

closer to the mathematics of physical science.

The investigations on differential equations led out in 1880,

when Poincare was twenty-six, to one of his most brilliant dis-

coveries, a generalization of the elliptic functions (and of some

others). The nature of a (uniform) periodic function of a single

variable has frequently been described in preceding chapters,

but to bring out what Poincare did, we may repeat the essen-

tials. The trigonometric function sin z has the period 27r, namely,

sin (s -{- 27t) = sin z; that is, when the variable 3 is increased by

277, the sine function of z returns to its initial value. For an

elliptic function, say JS(z), there are two distinct periods, say pi

andpa, such that E(z + pj = JS(z), E[z + Pa) = ^(2)* Poincare

found MisX periodicity is merely a special case of a more general

property: the value of certain functions is restored when the

variable is replaced by any one of a denuTnerable infinity of

linear fractional transformations of itself, and all these trans-

formations form a group. A few symbols will clarify this state-
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az b
Let z be replaced by — Then, for a denumerable infinity

of sets of values of a,b,c,d, there are uniform functions of 2, say

T{z) is one of them, such that

F = m-

Further, if and are any two of the sets of

values of a.b,c,d, and if 2 be replaced first by and then,

_ , _ , , , Qo2 -f- 6*>

m this, 2 be replaced hy —=—;

,

CgS -p dg

only do we have

givmg, say.

Ci2 -p di

Az 4- B
Cz 4- D, then not

but also

_ n.),
\CjZ 4- di/ \C22 4- dj

(Az 4“ T-,/
^— = F(z).

[Cz -hJDj ^
^

Furtherthe set of all the substitutions

az 4“ h

cz-\- d

(the arrow is read ^is replaced by’) which leave the value of

F(z) unchanged as just explained/om a group: the result of the

successive performance of two substitutions in the set,

OjZ 4- hi fljsS + ^2
Z —>

i—V’ ^ ^
, jt

*

c^z 4- di CjjZ 4- d*

is in the set; there is an ‘identity substitution’ in the set, namely

z^z (here a = 1, 5 = 0, c = 0, d = 1); and finally each substi-

tution has a unique ‘inverse’ — that is, for each substitution in

the set there is a single other one which, if applied to the first,

will produce the identity substitution. In summary, using the

terminology of previous chapters, we see that jP(z) is afttnciicn

Tjchich is invariant under an infinite group of linear fractional

transformations. Note that the infinity of substitutions is a
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denumerable infinity, as first stated: the substitutions can be

counted off 1,2,3, ... , and are not as numerous as the points
'

"

on a line. Poincare actually constructed such functions and

developed their most important properties in a series of

papers in the ISSO’s. Such functions are.called automorphic.

Only two remarks need he made here to indicate what Poin-

care achieved by this "wonderful creation. First, his theory

includes that of the elliptic functions as a detail. Second, as the

distinguished French mathematician Georges Humbert said,

Poincare found two memorable propositions which ‘gave him

the keys of the algebraic cosmos’

:

Two automorphic functions* invariant under the same group

are connected by an algebraic equation;

Conversely, the co-ordinates of a point on any algebraic

curve can be expressed in terms of automorphic functions, and

hence by uniform functions of a single parameter (variable).

An algebraic curve is one whose equation is of the type

F(x,y) = 0, where P(x,y) is a polynomial in x and y. As a simple

example, the equation of the circle whose centre is at the origin

- (0,0) - and whose radius is u, is According to the

second of Poincare’s ‘keys’, it must be possible to express x,y as

automorphic functions of a single parameter, say f. It is; for if

X = a cos t and y == a sin f, then, squaring and adding, we get

rid of t (since cos® t -f sin® t = 1), and find — a®. But the

trigonometric functions cos t, sin t are special cases of elliptic

functions, which in turn are special cases of automorphic

functions-

The creation of this vast theory ofautomorphic functions was

but one of many astonishing things in analysis which Poinear^

did before he was thirty. Nor was all his time devoted to analy-

sis; the theory of numbers, parts of algebra, and mathematical

astronomy also shared his attention. In the first he recast the

Gaussian theory of binary quadratic forms (see chapter oa

* Poincar^ called some of his functions ‘Fuchsian’, after the

Grerman mathematician Lazarus Fuchs (1833-1902) one of the

creators of the modem theory of differential equations, for reasons

that need not be gone into here. Others he called ‘Kleinian’ after

Felix Klem - in ironic acknowledgement of disputed priority.
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Gauss) in a geometrical shape which appeals particularly to

those who, like Pomcar6, prefer the intuitive approach. This of

course was not ail that he did in the higher arithmetic, but

limitations of space forbid further details.

Work of this calibre did not pass unappreciated. At the

unusually early age of thirty-two (in 1887) Poincar6 was elected

to the Academy. His proposer said some prettystrong things,but

most mathematicians will subscribe to their truth; ‘[Poincare’s]

work is above ordinary praise and reminds us inevitably of

what Jacobi wrote of Abel ~ that he had settled questions

which, before him, were unimagined. It must indeed be recog-

nized that we are witnessing a revolution in Mathematics com-

parable in every way to that which manifested itself, half a
century ago, by the accession of elliptic functions.’

To leave Poincare’s work in pure mathematics here is like

rising from a banquet table after having just sat down, but we
must turn to another side of his universality.

Since the time ofNewton and his immediate successors astro-

nomy has generously supplied mathematicians with more pro-

blems than they can solve. Until the late nineteenth century the

weapons used by mathematicians in their attack on astronomy

were practically aU immediate improvements of those invented

by Newton himself, Euler, Lagrange, and Laplace. But all

through the nineteenth century, particularly since Cauchy’s

development of the theory of functions of a complex variable

and the investigations of himselfand others on the convergence

of infinite series, a huge arsenal of untried weapons had been

accumulating from the labours of pure mathematicians. To
Poincare, to whom analysis came as naturally as thinking, this

vast pile of unused mathematics seemed the most natural thing

in the world to use in a new offensive on the outstanding pro-

blems of celestial mechanics and planetary evolution. He picked

and chose what he liked out of the heap, improved it, invented

new weapons of his own, and assaulted theoretical astronomy

in a grand fashion it had not been assaulted in for a century. He
jnodemized the attack; indeed his campaign was so extremely

modem to the majority of experts in celestial mechanics that

even to-day, forty years or more after Poincare opened his
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oSeosive, few have mastered his weapons and some, unable to

bendMs bow, insinuate that it is worthless in a practical attach.

Nevertheless Poincare is not without forceful champions whose

conquests would have been impossible to tlie men of the pre-

Poincare era.

Poincare’s first (1889) great success in mathematical astro-

nomy grew out of an unsuccessful attack on ‘the problem of n

bodies.’ For == 2 the problem was completely solved by

Newton; the famous ‘problem of three bodies’ {n = 3) will be

noticed later: when n exceeds 3 some of the reductions applic-

able to the ease n = 3 can be carried over.

According to the Newtonian law of gravitation two particles

of masses jk, at a distance D apart attract one another with

a force proportional to — — Imagine n material particles

distributed in any manner in space; the masses, initial motions’

and the mutual distances of all the particles are assumed known

at a given instant. If they attract one another according to the

Newtonian law, what will be their positions and motions (velo-

cities) after any stated lapse of time? For the purposes of mathe-

matical astronomy the stars in a cluster, or in a galaxy, or in a

cluster of galaxies, may he thought of as material particles

attracting one another according to the Newtonian law* The

‘problem of n bodies’ thus amounts - in one of its applications

-

to asking what will be the aspect of the heavens a year from

now, or a billion years hence, it being assumed that we have

suSicient observational data to describe the general configura-

tion now. The problem of course is tremendously complicated

by radiation ~ the masses of the stars do not remain constant

for of years; but a complete, calculable solution of the

problem ofn bodies in its Newtonian form would probably give

results of an accuracy sufidcient for all human purposes — the

human race will likely be extinct long before radiation can

introduce observable inaccuKwnes.

This was substantially the problem proposed for the prize

offered by Oscar II of Sweden in 1887. Poincard did not

solve the problem, but in 1889 he was awarded the prize any-

how by a iury consisting of Weierstrass, Hermite, and IVIittag-
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LefiSer for his general discussion of the differential equations of

dynamics and an attack on the problem of three bodies. The

last is usually considered the most important case of the n*body

problem, as the Earth, Moon, and Sun furnish an instance of the

case 71 = 3, In his report to Mittag-Leffler, Weierstrass TOOte,

‘You may tell your Sovereign that this work cannot indeed be

considered as furnishing the complete solution of the question

proposed, but that it is nevertheless of such importance that its

publication will inaugurate a new era in the history of Celestial

Mechanics, The end which His Majesty had in view in opening

the competition may therefore be considered as having been

attained.’ Not to be outdone by the King of Sweden, the

French Government followed up the prize by making Poincare

a Knight of the Legion of Honour - a much less expensive

acknowledgement of the young mathematician’s genius than

the King’s 2,500 crowns and gold medal.

As we have mentioned the problem of three bodies we may
now report one item from its fairly recent history; since the

time of Euler it has been considered one of the most difficult

problems in the whole range of mathematics. Stated mathe-

matically, the problem boils down to sohdng a system of nine

simultaneous differential equations (aH linear, each of the

second order). Lagrange succeeded in reducing this system to a

simpler. As in the majority of physical problems, the solution

is not to be expected in finite terms; if a solution eodsts ai all it

will he given by infinite series. The solution will ‘exist’ if these

series satisfy the equations (formally) and moreover converge

for certain values of the variables. The central difficulty is to

prove the convergence. Up till 1905 various special solutions

had been found, but the existence of anything that could be

called general had not been proved.

In 1906 and 1909 a considerable advance came from a rather

unexpected quarter — Finland, a country which sophisticated

Europeans even to-day consider barely civilized, especially for

its queer custom of paying its debts, and which few Americans

thought advanced beyond the Stone Age till Paavo Nurmi ran

the legs off the United States. Excepting only the rare case

when all three bodies collide simultaneously, Karl Frithiof
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Sundman of Helsingfors, utilizing analytical methods due to the

Italian Levi-Civita and the French Painleve, and making an

ingenious transformation of his own, proved the existence of a

solution in the sense described above. Sundman’s soiution is

not adapted to numerical computation, nor does it give much
information regarding the actual motion, but that is not the

point of interest here; a problem which had not been known to

be solvable was proved to be so. Many had struggled desperately

to prove this much; when the proof was forthcoming, some,

humanly enough, hastened to point out that Sundman had

done nothing much because he had not solved some problem

other than the one he had. This kind of criticism is as common
in mathematics as it is in literature and art, showing once more

that mathematicians are as human as anybody.

Poincare’s most original work in mathematical astronomy

was summed up in his great treatise Les mithodes nouveUes de la

m^canique celeste (New Methods of Celestial Mechanics; three

volumes, 1892, 1893, 1899). This was followed hy another three-

volume work in 1905-10 of a more immediately practical

nature, Legons de mecanique ciieste^ and a little later hy the

publication of his course of lectures Sur les figures d'iquilibrc

tftt3iemassfi:yZwidc(OntheFiguresofEquilibrium ofaFluid Mass),

and a historical-critical book Sur les hypotMses cosmogonigues

(On Cosmological Hypotheses).

Of the first of these works Daihoux (seconded by many
others) declares that it did indeed start a new era in celestial

mechanics and that it is comparable to the Mecanique cilesteot

Laplace and the earlier work of D’Alembert on the precession

of the equinoxes. ‘Following the road in analytical mechanics

opened up by Lagrange,’ Darboux says, ‘
. Jacobi had estab-

lished a theory which appeared to be one of the most complete

in dynamics. For fifty years we lived on the theorems of the

illustrious German mathematician, applyingthem and studjii^

them from all angles, but without adding anything essenriaL

It was Poinear6 who first shattered these rigid frames in which

the theory seemed to be encased and contrived for it vistas and

new windows on the external world. He introduced or used, in

the study of dynamical problems, different notions; the first,
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which had been given before and which, moreover, is applicable

not solely to mechanics, is that of varicdional equaticms, namely,

linear differential equations that determine solutions of a pro-

blem infinitely near to a given solution; the second, that of

integral invariants^ which belong entirely to him and play a

capital part in these researches. Further fundamental notions

were added to these, notably those concerning so-called

“periodic” solutions, for which the bodies whose motion is

studied return after a certain time to their initial positions and

original relative velocities.’

The last started a whole department of mathematics, the

investigation of periodic orbits: given a system of planets, or of

stars, say, with a complete specification of the initial positions

and relative velocities of all members of the sj’stem at a stated

epoch, it is required to determine under what conditions the

system will return to its initial state at some later epoch, and

hence continue to repeat the cycle of its motions indefinitely.

For example, is the solar system ofthis recurrent t}^, or if not,

would it be were it isolated and not subject to perturbations by

external bodies? Needless to say the general problem has not

yet been solved completely.

Much of Poincare’s work in his astronomical researches was

qualitative rather than quantitative, as befitted an intuitionist,

and this characteristic led him, as it had Riemann, to the study

of analysis situs. On this he published six famous memoirs

which revolutionized the subject as it existed in his day. The

work on analysis situs in its turn was freely applied to the

mathematics of astronomy.

We have already alluded to Poincare’s work on the problem

of rotating fluid bodies - of obvious importance in cosmogony,

one brand of which assumes that the planets were once suffi-

ciently like such bodies to be treated as if they actually were

without patent absurdity. Whether they were or not is of no

importance for the mathematics of the situation, which is of

interest in itself. A few extracts from Poincare’s own summary

will indicate more dearly than any paraphrase the nature of

what he mathematicized about in this difficult subject-

*Let us imagine a [rotating] fluid body contracting by csool-
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ing, but slowly enough to remain homogeneous and fox the

rotation to be the same in all its parts.

‘At first very approximately a sphere, the figure of this mass
will become an ellipsoid of revolution which will flatten more
and more, then, at a certain moment, it will be transformed into

an ellipsoid with three imequal axes. Later, the figure will cease

to be an ellipsoid and will become pear-shaped until at last the

mass, hollowing out more and more at its “waist”, will separate

into two distinct and unequal bodies.

‘The preceding hypothesis certainly cannot he applied to the

solar system. Some astronomers have thought that it might be

true for certain double stars and that double stars of the type

of Beta Lyrae might present transitional forms analogous to

those we have spoken of.’

He then goes on to suggest an application to Saturn’s rings,

and he claims to have proved that the rings can be stable only

if their density exceeds 1/16 that of Saturn. Itmay be remarked

that these questions were not considered as fully settled as late

as 1935. In particular a more drastic mathematical attack on

poor old Saturn seemed to show that hehadnot been completely

vanquished by the great mathematicians, including Clerk

Maxwell, who have been firing away at him off and on for the

past seventy years.

Once more we must leave the banquet having barely tasted

anything and pass on to Poincare’s voluminous work in mathe-

matical physics. Here his luck was not so good. To have cashed

in on his magnificent talents he should have been bom thirty

years later or have lived twenty years longer. He had the mis-

fortune to be in his prime just when physics had reached one of

its recurrent periods of senility, and he was so thoroughly

saturated with nineteenth-century theories when physics began

to recover its youth - after Planck, in 1900, and Einstein, in

1905, had performed the difficult and delicate operation of

endowing the decrepit roui with its first pair of new glands -

that he had barely time to digest the miracle before his death

in 1912. All his mature life Poincard seemed to absorb know-

ledge through his pores without a conscious effort. Like Cayley,

he was not only a prolific creator but also a profoundly erudite
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scholar. His range was probably wider than even Cayley^s, for

Cayley never professed to be able to understand everything that

was going on in applied mathematics. This unique erudition

may have been a disadvantage when it came to a question of

li^-ing science as opposed to classical.

Everything that boiled up in the melting pots of physics was
grasped instantly as it appeared by Poincare and made the

topic of several purely mathematical investigations. ^Vhen

wireless telegraphy was invented he seized on the new thing and

worked out its mathematics. While others were either ignoring

Einstein’s early work on the (special) theory of relativity or

passing it by as a mere curiosity, Poincare was already busy

with its mathematics, and he was the hrst scientific man of high

standing to tell the world what had arrived and urge it to watch
Einstein as probably the most significant phenomenon of the

new era which he foresaw but could not himself usher in. It was
the same with Planck’s early form of the quantum theor\\

Opinions differ, of course; but at this distance it is beginning to

look as if mathematical physics did for Poincare what Ceres did

for Gauss; and although Poincare accomplished enough in

mathematical physics to make half a dozen great reputations,

it was not the trade to which he had been bom and science

would have got more out of him if he had stuck to pure mathe-

matics - his astronomical work was nothing else. But science

got enough, and a man of Poincare’s genius is entitled to his

hobbies.

We pass on now to the last phase of Poincare’s universality

for which we have space: his interest in the rationale of mathe-

matical creation. In 1902 and 1904 the Swiss mathematical

periodical L*Enseignement Mathematique undertook an enquiry

into the working habits of mathematicians. Questionnaires

were issued to a number of mathematicians, of whom over a

hundred replied. The answers to the questions and an analysis

of general trends were published in final form in 1912.* Anyone
wishing to look into the ‘psychology’ of mathematicians will

*Enquite de *L*Enseignement ^lathematique' sur la mcthode de

tracail des maUiSmatieiens, Available either in the periodical or in

book form (8 -j- 137 pp.) from Gauthier-Yillais, Paris.
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find much of interest in this unique work and many confirma-

tions of the views at which Poincare had arrived independently

before he saw the residts of the questionnaire. A few points of

general interest may he noted before we quote from Poincare.

The early interest in mathematics of those who were to be-

come great mathematicians has been frequently exemplified in

preceding chapters. To the question ‘At what period . . . and

under what circumstances did mathematics seize you?’ ninety-

three replies to the first part were received; thirty-five said

before the age of ten; forty-three said eleven to fifteen; eleven

said sixteen to eighteen; three said nineteen to twenty; and the

lone laggard said twenty-six.

Again, anyone with mathematical friends will have noticed

that some of them like to work early in the morning (I know one

very distinguished mathematician who begins his day’s work

at the inhuman hour of five a.m-), while others do nothing till

after dark. The replies on this point indicated a curious trend -

possibly significant, although there are numerous exceptions:

mathematicians of the northern races prefer to work at night,

while the Latins favour the morning. Among night-workers

prolonged concentration often brings on insomnia as they grow

older and they change - reluctantly - to the morning. Felix

Klein, who worked day and night as a young man, once indi-

cated a possible way out of this difficulty. One of his American

students complained that he could not sleep for thinking of his

mathematics. ‘Can’t sleep, eh?’ Klein snorted. ‘What’s chloral

for?’ However, this remedy is not to be recommended indiscri-

minately; it probably had something to do with Klein’s orm

tragic breakdown.

Probably the most significant of the replies were those

received on the topic of inspiration versus drudgery as the

source of mathematical discoveries. The conclusion is that

‘Mathematical discoveries, small or great . • . are never bom of

spontaneous generation. They always presuppose a soil seeded

with preliminary knowledge and well prepared by labour, both

conscious and subconsdoxis.’

Those who, like Thomas Alva Edison, have declared that

genius is 99 per cent perspiration and only 1 per cent inspira-
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tioiif are not contradicted by those 'W'ho would reverse the

figtires. Both are right; one man remembers the dradgerj’’ while

anotherforgets it all in the thrill of apparently sudden discoveiy,

but both, when they analyse their impressions, admit that

without drudgery and a flash of ‘inspiration" discoveries are not

made. If drudgery alone sufficed, how is it that many gluttons

for hard work who seem to know everything about some branch

of science, while excellent critics and commentators, never

themselves make even a small discovery? On the other hand,

those who believe in ‘inspiration’ as the sole factor in discovery

or invention - scientific or literary - may find it instructive to

look at an early draft of any of Shelley’s ‘completely sponta-

neous’ poems (so far as these have been preserved and repro-

duced), or the successive versions of any of the greater novels

that Balzac inflicted on his maddened printer.

Poincare stated his views on mathematical discovery in an

essay first published in 1908 and reproduced in his Science et

2Iethode* The genesis of mathematical discovery, he says, is a

problem which should interest psychologists intensely, for it is

the activity in which the human mind seems to borrow least

from the external world, and by understanding the process of

mathematical thinking we may hope to reach what is most

essential in the human mind.

How does it happen, Pomcar6 asks, that there are persons

who do not understand mathematics? ‘This should surprise us,

or rather it would surprise us if we were not so accustomed to

it.’ If mathematics is based only on the rules of logic, such as all

normal minds accept, and which only a lunatic would deny

(according to Poincare), how is it that so many are mathemati-

cally impermeable? To which it may be answered that no

exhaustive set of experiments substantiating mathematical

incompetence as the normal human mode has yet been pub-

lished. ‘And further’, he asks, ‘how is error possible in mathe-

matics?’ Ask Alexander Pope; ‘To err is human’, whidi is as

unsatisfactory a solution as any other. The chemistry of the

digestive system may have something to do with it, but Poin-

care prefers a more subtle explanation - one which could not be

tested by feeding the ‘vile body’ hasheesh and alcohol.
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‘Tlie answer seems to me evident’, lie declares. Logic lias very

little to do with discovery or invention, and memory plays

tricks. Memory however is not so important as it might be. His

own memory, he says without a blush, is had: ‘Why then does

it not desert me in a difi&cult piece of mathematical reasoning

where most chess players [whose ‘memories’ he assumes to be

excellent] would be lost? Evidently because it is guided by the

general course of the reasoning. A mathematical proof is not a

mere juxtaposition of syllogisms; it is syllogisms arranged in a

certain order

^

and the order is more important than the elements

themselves.’ If he has the ‘intuition’ of this order, memory is at

a discount, for each syllogism will take its place automatically

in the sequence.

Mathematical creation, howev^er, does not consist merely in

making new combinations of things already known; ‘anyone

could do that, but the combinations thus made would be infinite

in number and most of them entirely devoid of interest. To

create consists precisely in avoiding useless combinations and

in making those which are useful and which constitute only a

small minority. Invention is discernment, selection.’ But has

not all this been said thousands of times before? WTiat artist

does not know that selection - an intangible - is one of the

secrets of success? We are exactly where we were before the

investigation began.

To conclude this part of Poincare’s observations it may he

pointed out that much of what he says is based on an assump-

tion which may indeed be true but for which there is not a

particle of scientific evidence. To put it bluntly he assumes that

the majority of human beings are mathematical imbeciles.

Granting him this, we need not even then accept his purely

romantic theories. They belong to inspirational literature and

not to science. Passing to something less controversial, we shall

now quote the famous passage in which Poincai'e describes how

one of his own greatest ‘inspirations’ came to him. It is meant

to substantiate his theory of mathematical creation. Whether

it does or not may be left to the reader.

He first points out that the technical terms need not be

understood in order to follow his narrative; ‘What is of interest
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to the psychologist is not the theorem but the circumstances/

For fifteen days I struggled to prove that no functions
analogous to those I have since called Fiichsian functions
could exist; I Tvas then very ignorant. Every day I sat

down at my work table where I spent an hour or two; I
tried a great number of combinations and arrived at no
result. One evening, contrary to my custom, I took black
coffee; I could not go to sleep; ideas swarmed up in clouds;
I sensed them clashing until, to put it so, a pair would hook
together to form a stable combination. By morning I had
established the existence of a class of Fuehsian functions,

those derived from the hypergeometric series. I had only to
write up the results, which took me a few hours.
Next I wished to represent these functions by the quo-

tient of two series; this idea was perfectly conscious and
thought out; analogy with elliptic functions guided me. I
asked myself what must be the properties of these series if

they existed, and without diiTiculty I constructed the series

which I called thetafuchsian.

I then left Caen, where I was living at the time, to parti-

cipate in a geological trip sponsored by the School of
Mines, The exigencies of travel made me forget my mathe-
matical labours; reaching Coutances we took a bus for

some excursion or another. The instant I put my foot on
the step the idea came to me, apparently with nothing
whatever in my previous thoughts having prepared me for

it, that the transformations which I had used to define

Fuehsian functions were identical with those of non-
Euclidean geometry, I did not make the verification; I

should not have had the time, because once in the bus I

resumed an interrupted conversation; but I felt an instant

and complete certainty. On returning to Caen, I verified

the result at my leisure to satisfy my conscience.

I then undertook the study of certain arithmetical ques-

tions without much apparent success and without suspect-

ing that such matters could have the slightest connexion
withmy previous studies. Disgusted at my lack of success,

I went to spend a few days at the seaside and thought of
something else. One day, while walking along the cliffs,

the idea came to me, again with the same characteristics

of brevity, suddenness, and immediate certainty, that the
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transformations of indefinite ternary quadratic forms were
identical with those of non-Euclidean geometry.

On returning to Caen, I reflected on this result and
deduced its consequences; the example of quadratic forms

showed me that there were Fuchsian groups other than

those corresponding to the hypergeometric series; I saw

that I could apply to them the theory of thetafuchsian

functions, and hence that there existed thetafuchsian

functions other than those derived from the hjq^ergeo-

metric series, the only ones I had known up tiU then.

Naturally I set myself the task of constructing all these

functions, I conducted a systematic siege and, one after

another, carried all the outworks; there was however one

which still held out and whose fall would bring about that

of the whole position. But all my efforts served only to

make me better acquainted with the difficulty, which in

itselfwas something. AU this work was perfectly conscious.

At this point I left for Mont-Valerien, where I was to

discharge my military service. I had therefore very

different preoccupations. One day, while crossing the

boulevard, the solution of the difficulty which had stopped

me appeared to me all of a sudden. I did not seek to go into

it immediately, and it was only after my service that I

resumed the question. I had all the elements, and had only

to assemble and order them. So I wrote out my definitive

memoir at one stroke and with no difficulty.

Many other examples of this sort of thing could be given horn

his own work, he says, and from that of other mathematicians

as reported in UEnsei^riement MathimaMque. From his experi-

ences he believes that this semblance of ‘sudden illuminatian

[is] a manifest sign of previous long subconscious work’, and be

proceeds to elaborate his theory of the subconscious mind and

its part in mathematical creation. Conscious work is necessary

as a sort of trigger to fire off the accumulated dynamite whidb

the subconscious has been excreting - he does not put it so, bat

what he says amounts to the same. But what is gained in the

way of rational explanation if, following Poincar6, we foist off

on the ‘subconscious mind’, or the ‘subliminal self’, the very

activities which it is our object to understand? Instead of ear

dowing this mysterious agent with a hypothetical tact enahlii^
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it to discriminate between the ‘exceedingly numerous’ possible

combinations presented (how, Poincare does not say) for its

inspection, and calmly saying that the ‘subconscious’ rejects a|l

but the ‘useful’ combinations because it has a feeling for sym-

metry and beauty, sounds suspiciously like solving the initial

problem by gi^dng it a more impressive name. Perhaps this is

exactly what Poincare intended, for he once defined mathe-

matics as the art of giving the same name to difierent things; so

here he may be rounding out the symmetry of his view by giv-

ing different names to the same thing. It seems strange that a

man who could have been satisfied with such a ‘psychology’ of

mathematical invention was the complete sceptic in religious

matters that Poincare was. After Poincare’s brilliant lapse into

psychology sceptics may well despair of ever disbelieving

anything.

During the first decade of the twentieth century Poincare’s

fame increased rapidly and he came to he looked upon, espe-

cially in France, as an oracle on ail things mathematical. His

pronoxmcements on all manner of questions, from politics to

ethics, were usually direct and brief, and were accepted as final

by the majority. As almost invariably happens after a greaft

man’s extinction, Poincare’s dazzling reputation during Ms
lifetime passed through a period of partial eclipse in the decade

following his death. But his intuition for what was likely to be

of interest to a later generation is always justifying it^lf. To

take but one instance of many, Poincare was a vigorous oppo-

nent of the theory that all mathematics can be rewritten in

terms of the most elementary notions of classical logic; some-

thiog more than logic, he believed, makes mathematics what it

is. Although he did not go quite so far as the current intuitionist

school, he seems to have believed, as that school does, that at

least some mathCTaatical notions precede logic, and if one is to

be derived from the other it is logic which must come out of

mathematics, not the other way about. Whether this is to be

the ultimate creed remains to be seen, but at present it appears

as if the theory which Poincare assailed with all the irony at Ms
command is not the final one, whatever may be its merits*

Except for a distressing illness during his last four years
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Poincare’s busy life was tranquil and happy. Honours were

showered upon him by all the leading societies of the world, and

in 1906, at the age of fifty-two, he achieved the highest distinc-

tion possible to a French scientist, the Presidency of the

x\cademy of Sciences. None of all this inflated liis ego, for

Poincare was truly humble and unaffectedly simple. Ke knew

of course that he was without a dose rival in the days of his

maturity, but he could also say without a trace of affectation

that he knew nothing compared to what is to be known. He
was happily married and had a son and three daughters in

whom he took much pleasure, especially when they were chil-

dren. His wife was a great-granddaughter of fitienne-GeoScoy

Saint-Hilaire, remembered as the antagonist of that pugnacious

comparative anatomist Cuvier. One of Poincare’s passions was

symphonic music.

At the International Mathematical Congress of 1908, held at

Rome, Poincare was prevented by illness from reading his

stimulating (if premature) address on The Future of Maike-

matical Physics, His trouble was hypertrophy of the prostate,

which was relieved by the Italian surgeons, and it was thought

that he was permanently cured. On his return to Paris he

resumed Ms work as energetically as ever. But in 1911 he began

to have presentiments that he might not live long, and on

9 December wrote asking the editor of a mathematical journal

whether he would accept an unfinished memoir - contrary to

the usual custom - on a problem wMch Poincjare considered of

the highest importance: . at my age, I may not be able to

solve it, and the results obtained, susceptible of putting re-

searchers on a new and unexpected path, seem to me too full of

promise, in spite of the deceptions they have caused me, that I

should resign myself to sacrificing them. . . .
’ He had spent the

better part of two fruitless years trying to overcome his

difficulties.

A proof of the theorem which he conjectured would have

enabled him to make a striking advance in the problem of three

bodies; in particular it would have permitted him to prove the

existence of an infinity of periodic solutions in cases more

general than those Mtherto considered. The desired proof was
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given shortly after the publication of Poincare’s ‘unfinished

symphony’ liy a young American mathematician, George

David Biikhoi (1884^1944).

In the spring of 1912 Poincare fell ill again and underwent a

second operation on 9 July. The operation was successful, but

on 17 July he died veiy suddenly from an embolism while

dressing. He was in the fifty-ninth year of his age and at the

height of his powers - ‘the living brain of the rational sciences*,

in the words of Painlev^.



CHAPTER TWENTY-NINE

PARADISE LOST?

Cantor

The controversial topic of Mengenlehre (theory of sets, or

classes, particularly of infinite sets) created in 1874-95 by

Georg Cantor (1845-1918) may well be taken, out of its chrono-

logical order, as the conclusion of the whole stor}^ This topic

typifies for mathematics the general collapse of those principles

which the prescient seers of the nineteenth century, foreseeing

everything but the grand debacle, believed to be fundamentaliy

sound in aU things from physical science to democratic govern-

ment.

If ‘collapse’ is perhaps too strong to describe the transition

the world is doing its best to enjoy, it is nevertheless true that

the evolution of scientific ideas is now proceeding so vertigi-

nously that evolution is barely distinguishable from revolution.

Without the errors of the past as a deep-seated focus of dis-

turbance the present upheaval in physical science would per-

haps not have happened; but to credit our predecessors with ail

the inspiration for what our own generation is doing, is to give

them more than their due. This point is worth a moment’s

consideration, as some may be tempted to say that the corre-

sponding ‘revolution’ in mathematical thinking, whose begin-

nings are now plainly apparent, is merely an echo of Zeno and

other doubters of ancient Greece*

The difficulties of Pythagoras over the square root of 2 and

the paradoxes of Zeno on continuity (or ‘infinite divisibility’)

are - so far as we know - tdie origins of our present mathe-

matical schism. Mathematicians to-day who pay any attention

to the philosophy (or foxindations) of their subject are split into

at least two factions, apparently beyond present hope of recon-

ciliation, over the validity of the reasoning used in mathemati-
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cal analysis, and this disagreement can be traced back through

the centuries to the Middle Ages and thence to ancient Greece-

All sides have had their representatives in all ages of mathe-

matical thought, whether that thought was disguised in provo-

cative paradoxes, as with Zeno, or in logical subtleties, as with

some of the most exasperating logicians of the Middle Ages.

The root of these differences is commonly accepted by mathe-

maticians as being a matter of temperament; any attempt to

convert an analyst like Weierstrass to the scepticism of a

doubter like Kronecker is bound to be as futile as trying to

convert a Christian fundamentalist to rabid atheism.

A few dated quotations from leaders in the dispute may serve

as a stimulant - or sedative, according to taste ~ for our enthu-

siasm over the singular intellectual career of Georg Cantor,

whose ‘positive theory of the infinite* precipitated, in our own

generation, the fiercest frog-mouse battle (as Einstein once

called it) in history over the validity of traditional mathema-

tical reasoning.

In 1831 Gauss expressed his ‘honor of the actual infinite’ as

follows. ‘I protest against the use ofinfinite magnitude as some-

thing completed, which is never permissible in mathematics.

Infinity is merely a way of speaking, the true meaning being a

limit which certain ratios approach indefinitely close, while

others are permitted to increase without restriction.’

Thus, if X denotes a real number, the fraction Ijx diminishes

as X increases, and we can find a value of x such that l[x differs

from zero by any preassigned amount (other than zero) which

may be as small as we please, and as x continues to increase, the

difference remains less than this preassigned amount; the limit

of l/a, ‘as X tends to infinity,’ is zero. The symbol of infinity is

00 ; the assertion l/oo = 0 is nonsensical for two reasons: ‘divi-

sion by infinity’ is an operation which is undefined, and hence

has no meaning; the second reason was stated by Gauss.

Similarly 1/0 = oo is meaningless.

Cantor agrees and disagrees with Gauss. Writing in 1886 on

the problem of the actual (what Gauss called completed) mfi-

uite, Cantor says that ‘in spite of the essential difference

between the concepts of the potential and the actual “infinite’*,
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the former meaning a variable finite magnitude increasiiig

beyond all finite limits (like ar in l/a: above), while the latter is a

fixed^ constant magnitude lying beyond all finite magnitudes, it

happens only too often that they are confused.’

Cantor goes on to state that misuse of the infinite in mathe-

matics had justly inspired a horror of the infinite among careful

mathematicians of his day, precisely as it did in Gauss. Never-

theless he maintains that the resulting ‘uncritical rejection of

the legitimate actual infinite is no less a violation of the nature

of things [whatever that may be - it does not appear to have

been revealed to mankind as a whole], wliich must be taken as

they are’ - however that may be. Cantor thus definitely aligns

himself with the great theologians of the Middle Ages, ofwhom
he was a deep student and an ardent admirer.

Absolute certainties and complete solutions of age-old pro-

blems always go down better if well salted before swallowing.

Here is what Bertrand Russell had to say in 1901 about

Cantor’s Promethean attack on the infinite.

‘Zeno was concerned with three problems. . . . These are the

problem of the infinitesimal, the infinite, and continuity. . .

.

From his day to our own, the finest intellects of each generation

in turn attacked these problems, but achieved, broadly speak-

ing, nothing. . . . Weierstrass, Dedeldnd, and Cantor . . . have

completely solved them. Their solutions . . . are so clear as to

leave no longer the slightest doubt of difficulty. This achieve-

ment is probably the greatest of which the age can boast. . .

.

The problem of the infinitesimal was solved by Weierstrass, the

solution of the other two was begun by Dedekind and definitely

accomplished by Cantor.’*

The enthusiasm of this passage warms us even to-day,

although we know that Russell in the second edition (1924) of

his and A. N. Whitehead’s Prindpia Mathematica admitted

that ail was not well with the Dedekind ‘cut’ (see Chapter 27),

which is the spinal cord of analysis. Nor is it well to-day. More

is done for or against a particular creed in science or mathe-

* Quoted from R. E. Moritz’ Memorabilia McUhcmaiica, 1914. The

original source is not accessible to me.
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matics in a decade than was accomplished in a century of anti-

quity", the hliddle Ages, or the late renaissance. More good

minds attack an outstanding scientific ormathematical problem

to-day than ever before, and finality has become the private

property of fimdamentalists. Not one of the finalities in

Russell’s remarks of 1901 has survived. A quarter of a century

ago those who were unable to see the great light which the

prophets assured them was blazing overhead like the noonday

sun in a midnight sky were called merely stupid. To-day for

every- competent expert on the side of the prophets there is an

equally competent and opposite expert against them. If there

is stupidity anywhere it is so evenly distributed that it has

ceased to be a mark of distinction. We are entering a new era,

one of doubt and decent humility.

On the doubtful side about the same time (1905) we find

Poincare. T have spoken ... of our need to return continually

to the first principles of our science, and of the advantages of

this for the study of the human mind. This need has inspired

two enterprises which have assumed a very prominent place in

the most recent development of mathematics. The first is

Cantorism. . . • Cantor introduced into science a new way of

considering the mathematical infinite . • . but it has come about

that we have encountered certain paradoxes, certain apparent

contradictions that would have delighted Zeno the Eleatic and

the school of Megara. So each must seek the remedy. I for my
part - and I am not alone - think that the important thing is

never to introduce entities not completely definable in a finite

number of words. Whatever be the cure adopted, we may pro-

mise ourselves the joy of the physician called in to treat a

beautiful pathologic case.’

A few years later Poincare’s interest in pathology for its own

sake had abated somewhat. At the International Mathematical

Congress of 1908 at Rome, the satiated physician delivered

himself of this prognosis: ^Later generations will regard Mengen-

lehre as a disease from which one has recovered.’

It was Cantor’s greatest merit to have discovered in spite of

himself and against his own wishes in the matter that the ‘body

mathematic’ is profoundly diseased and that the sickness with

C15
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which Zeno infected it has not yet been alleviated. His disturb-

ing discovery is a curious echo of his own intellectual life. We
shall first glance at the facts of his material existence, not of

much interest in themselves, perhaps, but singularly illumina-

tive in their later aspects of his theory.

Of pure Jewish descent on both sides, Georg Ferdinand

Ludwig Philipp Cantor was the first child of the prosperous

merchant Georg Waldemar Cantor and his artistic wife Maria

Bohm. The father was bom in Copenhagen, Denmark, but

migrated as a young man to St Petersburg, Russia, where the

mathematician Georg Cantor was bom on 3 March 1845. Pul-

monary disease caused the father to move in 1856 to Frankfurt,

Germany, where he lived in comfortable retirement till his

death in 1863. From this curious medley of nationalities it is

possible for several fatherlands to claim Cantor as their son.

Cantor himself favoured Germany, but it cannot be said that

Germany favoured him very cordially.

Georg had a brother Constantin, who became a German army

oiBficer (what a career for a Jew!), and a sister, Sophie Nobiling,

The brother was a fine pianist; the sister an accomplished

designer. Georg’s pent-up artistic nature found its turbulent

outlet in mathematics and philosophy, both classical and

scholastic. The marked artistic temperaments of the children

were inherited from their mother, whose grandfather was a

musical conductor, one of whose brothers, living in Vienna,

taught the celebrated violinist Joachim. A brother of Maria

Cantor was a musician, and one of her nieces a painter. If it is

true, as claimed by the psychological proponents of drab medio-

crity, that normality and phlegmatic stability are equivalent,

all this artistic brilliance in his family may have been the root

of Cantor’s instability.

The family were Christians, the father having been converted

to Protestantism; the mother was bom a Roman Catholic. Like

his arch-enemy Kxonecker, Cantor favoured the Protestant side

and acquired a singular taste for the endless hairsplitting of

medieval theology. Had he not become a mathematician it is

quite possible that he would have left Ms mark on pMLosophy

or theology. As an item of interest that may be noted in.this
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connexion, Cantor’s theory of the infinite was eagerly pounced

on by the Jesuits, whose keen logical minds detected in the

mathematical imagery beyond their theological comprehension

indubitable proofs of the existence of God and the self-consis-

tency of the Holy Trinity with its three-in-one, one-in-three,

co-equal and co-etemal. Mathematics has strutted to some

pretty queer tunes in the past 2,500 years, hut this takes the

cake. It is only fair to say that Cantor, who had a sharp wit and

a sharper tongue when he was angered, ridiculed the pretentious

absurdity of such ‘proofs’, devout Christian and expert

theologian though he himself was.

Cantor’s school career was like that of most highly gifted

mathematicians - an early recognition (before the age of fifteen)

of his greatest talent and an absorbing interest in mathematical

studies. His first instruction was under a private tutor, followed

by a course in an elementary school in St Petersburg. '\Yhen the

family moved to Germany, Cantor first attended private schools

at Frankfurt and the Darmstadt non-classical school, entering

the Wiesbaden Gymnasium in 1860 at the age of fifteen.

Georg was determined to become a mathematician, hut his

practical father, recognizing the boy’s mathematical ability,

obstinately tried to force him into engineering as a more pro-

mising bread-and-butter profession. On the occasion of Cantor's

confirmation in 1860 his father wrote to him expressing the high

hopes he and all Georg’s numerous aimts, uncles, and cousins in

Germany, Denmark, and Russia had placed on the gifted boy:

‘They expect from you nothing less than that you become a

Theodor Schaeffer and later, perhaps, if Gk)d so wills, a shining
star in the engineermg firmament.’ When will parents recognize

the presumptuous stupidity of trying to make a cart horse out

of a bom racer?

The pious appeal to God which was intended to blackjack the

sensitive, religious boy of fifteen into submission in 1860 would

to-day (thank God!) rebound like a tennis ball from the harder

heads of our own younger generation. But it hit Cantor pretty

hard. In fact it knocked him out cold. Losing his father

devotedly and being of a deeply religious nature, young Cantor

could not see that the old man was merely rationalizing his own
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greed for money. Thus began the first waxping of Georg Cantor’s

acutely sensitive mind. Instead of rebelling, as a gifted hoy

to-day might do with some hope of success, Georg submitted

till it became apparent even to the obstinate father that he was

wrecking his son’s disposition. But in the process of trying to

please his father against the promptings of his own instincts

Georg Cantor sowed the seeds of the self-distrust which was to

make him an easy victim for ICronecker’s vicious attack in later

life and cause him to doubt the value of his work. Had Cantor

been brought up as an independent human being he would

never have acquired the timid deference to men of established

reputation which made his life wretched.

The father gave in when the mischief was already done. On
Georg’s completion of his school course with distinction at the

age of seventeen, he was permitted by ‘dear papa’ to seek a

university career in mathematics. ‘My dear papa!’ Georg writes

in his boyish gratitude : ‘You can realize for yourselfhow greatly

your letter delighted me. The letter fixes my future. . . , Now I

am happy when I see that it will not displease you if I followmy
feelings in the choice. I hope you will live to find joy in me, dear

father; since my soul, my whole being, lives in my vocatbn;

what aman desires to do, and thatto which an inner compulsion

drives him, that will he accomplish!’ Papa no doubt deserves a

vote of thanks, even if Georg’s gratitude is a shade too servile

for a modem taste.

Cantor began his university studies at Zurich in 1862, but

migrated to the University of Berlin the following year, on the

death of his father. At Berlin he specialized in mathematics,

philosophy, and physics. The first two divided his interests

about equally; for physics he never had any sure feeling. In

mathematics his instructors were Kummer, Weierstrass, and

his future enemy Kronecker. Following the usual German

custom, Cantor spent a short time at another university, and

was in residence for one semester of 1866 at Gottingen.

With Kummer and ICronecker at BerMn the mathematical

atmosphere was highly charged with arithmetic. Cantor made a

profound study of the Disquisitiones Arithmeiicae of Gauss and

wrote his dissertation, accepted for the Ph,D. degree in 1887,
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on a difficult point which Gauss had left aside concerning the

solution in integers y, z of the indeteiminate equation

ax- -r by^ -l cs® = 0,

where a, c are any given integers. This was a hue piece of

work, but it is safe to say that no mathematician who read it

anticipated that the conser\^ative author of twenty-two was to

become one of the most radical originators in the history of

mathematics. Talent no doubt is plain enough in this first

attempts but genius - no. There is not a single hint of the great

originator in this severely classical dissertation.

The like may be said for all of Cantor’s earliest work pub-
lished before he was twenty-nine. It was excellent, but might
have been done by any brilliant man who had thoroughly

absorbed, as Cantor had, the doctrine of rigorous proof from
Gauss and Weierstrass. Cantor’s first love was the Gaussian

theory of numbers, to which he was attracted by the hard,

sharp, clear perfection of the proofs. From this, under the influ-

ence of the Weierstrassians, he presently branched off into

rigorous analysis, particularly in the theory of trigonometric

series (Fourier series).

The subtle difficulties of this theory (where questions of con-

vergence of infinite series are less easily approachable than in

the theory of power series) seem to have inspired Cantor to go
deeper for the foundations of analysis than any of his contem-
poraries had cared to look, and he was led to his grand attack

on the mathematics and philosophy of the infinite itself, which
is at the bottom of all questions concerning continuity, limits,

and convergence. Just before he was thirty, Cantor published

his fijpst revolutionary paper (in Crelle’s Journal) on the theory

of infinite sets. This will be described presently. The unex-

pected and paradoxical result concerning the set of all algebraic

numbers which Cantor established in this paper and the com-
plete novelty ofthe methods employed immediately marked the

young author as a creative mathematician of extraordinary

originalit3\ Whether all agreed that the new methods were

sound or not is beside the point; it was universally admitted

that a man bad arrived with something fundamentally new in
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mathematics. He should have been given an influential position

at once.

Cantor’s material career was that of any of the less eminent

German professors of mathematics. He never achieved hig

ambition of a professorship at Berlin, possibly the highest Ger-

man distinction during the period of Cantor’s greatest and most

original productivity (1874-84, age twenty-nine to thirty-nine).

All his active professional career was spent at the University of

Halle, a distinctly third-rate institution, where he was

appointed Privatdozeni (a lecturerwho lives by what fees he can

collect from his students) in 1869 at the age of twenty-four. In

1872 he was made assistant professor and in 1879 - before the

criticism of his work had begun to assume the complexion of a

malicious personal attack on himself - he was appointed full

professor. His earliest teaching experience was in a girl’s school

in Berlin. For tlois curiously inappropriate task he had qualified

himsfilf by listening to dreary lectures on pedagogy by an unin-

spired mathematical mediocrity before securing his state licence

to teach children. More social waste.

Rightly or wrongly, Cantor blamed Kronecker for his failure

to obtain the coveted position at Berlin, The aggressive clan-

nishness of Jews has often been remarked, sometimes as an

argument against employing them in academic work, but it has

not been so generally observed that there is no more vicious

academic hatred than that of one Jew for another when they

disagree on purely scientific matters or when one is jealous or

afraid of another. Gentiles either laugh these hatreds off or go

at them in an efficient, underhand way which often enables

them to accomplish their spiteful ends under the guise of sincere

friendship. When two intellectual Jews fall out they disagree all

over, throw reserve to the dogs, and do everything in their

power to cut one another’s throats or stab one another in the

back. Perhaps after all this is a more decent way of fighting - if

men must fight - than the sanctimonious hypocrisy of the

other. The object of any war is to destroy the enemy, and being

sentimental or chivalrous about the unpleasant business is the

mark of an incompetent fighter. Kronecker was one of the most

competent warriors in the history of scientific controversy;
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Cantor, one ofthe least competent. Kronecker won. But, as will

appear later, Kxonecker’s bitter animosit3" towards Cantor was

not wholly personal but at least partly scientific and dis-

interested.

The year 1874 which saw the appearance of Cantor's first

revolutionary paper on the theory of sets was also that of his

marriage, at the age of twenty-nine, to Vally Guttmann, Two
sons and four daughters were bom of this marriage. None of the

children inherited their father’s mathematical ability.

On their honeymoon at Interlaken the young couple saw a lot

of Dedekind, perhaps the one first-rate mathematician of the

time who made a serious and sympathetic attempt to under-

stand Cantor’s subversive doctrine.

HimseK somewhat of a persona non grata to the leading Ger-

man overlords of mathematics in the last quarter of the nine-

teenth century, the profoundly original Dedekind was in a posi-

tion to sympathize with the scientifically disreputable Cantor.

It is sometimes imagined by outsiders that originality is always

assured of a cordial welcome in science. The history of mathe-

matics contradicts this happy fantasy: the way of the trans-

gressor in a well-established science is likely to be as hard as it

is in any other field of human conservatism, even when the

transgressor is admitted to have found something valuable by

overstepping the narrow bounds of bigoted orthodoxy.

Both Dedekind and Cantor got what they might have

expected had they paused to consider before striking out in new
directions. Dedekind spent his entire working life in mediocre

positions; the claim - now that Dedekind's work is recognized

as one of the most important contributions to mathematics that

Germany has ever made - that Dedekind preferred to stay in

obscure holes while men who were in no sense his intellectual

superiors shone like tin plates in the glory of public and aca-

demic esteem, strikes observers who are themselves ‘Aryans'

but not Germans as highly diluted eyewash.

The ideal of German scholarship in the nineteenth century

was the lofty one of a thoroughly co-ordinated ‘safety first’, and

perhaps rightly it showed an extreme Gaussian caution towards

radical originality - the new thing might conceivably be not
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quite Tight. After all an honestly edited encyclopaedia is in

general a more reliable source of information about the soar-

ing habits of skylarks than a poem, say Shelley’s, on the same

topic.

In such an atmosphere of cloying alleged fact, Cantor’s theory

of the infinite - one of the most disturbingly original contribu-

tions to mathematics in the past 2,500 years - felt about as

much freedom as a skylark trying to soar up through an atmo-

sphere of cold glue. Even if the theory was totally wrong - and

there are some who believe it cannot be salvaged in any shape

resembling the thing Cantor thought he had launched - it

deserved something better than the brickbats which were

hurled at it chiefly because it was new and unbaptized in the

holy name of orthodox mathematics.

The pathbreaking paper of 1874 undertook to establish a

totally unexpected and highly paradoxical property of the set

of dU algebraic numbers. Although such numbers have been

frequently described in preceding chapters, we shall state once

more what they are, in order to bring out clearly the nature of

the astounding fact which Cantor proved - in saying ‘proved’

we deliberately ignore for the present all doubts as to the

soundness of the reasoning used by Cantor.

If r satisfies an algebraic equation of degree n with rational

integer {common whole number) coefficients, and if r satisfies

no such equation of degree less than n, then r is an algebraic

number of degree w-

This can be generalized. For it is easy to prove that any root

of an equation of the type

-f + . • . + = 0,

in which the c’s are any given algebraic numbers (as defined

above), is itself an algebraic number. For example, according to

this theorem, all roots of

(1 - 8V~l)a3 - (2 + sVlT) X + ^^90’= 0

are algebraic numbers, since the coefficients are. (The first co-
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eiScient satisfies a- — 2ai 4- 10 = 0, the second, x- — 4z

— 421 = 0, the third, — 90 = 0, of the respective degrees

2,2,3;.

Imagine (if j'ou can) the set of all algebraic numbers. Among
these will be all the positive rational integers 1, 2, 3, ... , since

any one of them, say n, satisfies an algebraic equation, as — n =
0. in which the coefficients (1, and — n) are rational integers.

But in addition to these the set of all algebraic numbers will

include all roots of all quadratic equations with rational integer

coefficients, and all roots of all cubic equations with rational

integer coefficients, and so on, indefinitely. Is it not iniuiivoely

evident that the set of all algebraic numbers will contain infi-

niiely more members than its subset of the rational integers

1. 2, 3, ... ? It might indeed be so, but it happens to be false.

Cantor proved that the set of all rational integers 1, 2, 8, ...

contains preciseh^ as many members as the ^infinitely more

inclusive’ set of all algebraic numbers.

A proof of this paradoxical statement cannot be given here,

but the kind of device - that of ‘one-to-one correspondence*' -

upon which the proof is based can easOy be made intelligible.

This should induce in the philosophical mind an understanding

of what a cardinal number is. Before describing this simple but

somewhat elusive concept it will be helpful to glance at an

expression of opinion on this and other definitions of Cantor’s

theory which emphasizes a distinction between the attitudes of

some mathematicians and many philosophers toward all

questions regarding ‘niimber’ or ‘magnitude'.

‘A mathematician never defines magnitudes in themselves,

as a philosopher would be tempted to do; he defines their

equality, their sum, and their product, and these definitions

determine, or rather constitute, all the mathematical properties

ofmagnitudes. In a yet more abstract and more formal manner

he lays dawn symbols and at the same time prescribes the rules

according to which they must be combined; these rules suffice

to characterize these symbols and to give them a mathematical

value. Briefly, he creates mathematical entities by means of

arbitrary conventions, in the same way that the several chess-

men are defined by the conventions which govern their moves
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and the relations between them.’* Not ail schools of mathe-

matical thought would subscribe to these opinions, but they

suggest at least one ‘philosophy’ responsible for the following

definition of cardinal numbers.

Note that the initial stage in the definition is the description

of ‘same cardinal number’, in the spirit of Couturat’s opening

remarks; ‘cardinal number’ then arises phoenix-like from the

ashes of its ‘sameness’. It is ail a matter of relations between

concepts not explicitly defined.

Two sets are said to have the same cardinal number when

all the things in the sets can be paired off one-to-one. After

the pairing there are to be no unpaired things in either

set.

Some examples will clarify this esoteric definition. It is one

of those trivially obvious and fecund nothings which are so

profound that they are overlooked for thousands of years. The

sets (a?, ?/, 2;), (fl, 6, c) have the same cardinal number (we shall not

commit the blunder of saying ‘Of course! Each contains three

letters') because we can pair off the things x,y,zm. the first set

with those, a, 6, c in the second as follows, x with a, y with h,

z with c, and having done so, find that none remain unpaired in

either set. Obviously there are other ways for effecting the

pairing. Again, in a Christian community practising technical

monogamy, if twenty married couples sit down together to

dioner, the set of husbands will have the same cardinal number

as the set of wives.

As another instance of this ‘obvious’ sameness, we recall

* L. Couturat, De Vinflni madiemaiigue, Paris, 1896, p. 49. 'With

the caution that much of this work is now hoi)eIessly out of date, it

can be recommended for its clarity to the general reader. An account

of the elements of Cantorism by a leading Polish expert which is

within the comprehension of anyone with a grade-school education

and a taste for abstract reasoning is the Legons sur les nomhres trans^

finis

f

by Wadaw Sierpinski, Paris, 1928. The preface by Borel

suppKes the necessary danger signal. The above extract from

Couturat is of some historical interest in connexion with Hilbert’s

programme. It anticipates by thirty years Hilbert’s statement of his

formalist creed.

624



PAEADISE LOST?

Galileo’s example of the set of all squares of positive integers

and the set of all positive integers:

12 92 02 4.2 «2

1 ,233)4<9... jTl}...

The ‘paradoxical’ distinction between this and the preceding

examples is apparent. If all the wives retire to the drawing

room, leaving their spouses to sip port and tell stories, there will

be precisely twenty human beings sitting at the table, just half

as many as there were before. But if all the squares desert the

natural numbers, there are just as many left as there were

before. Dislike it or not as we may (we should not, if we are

rational animals), the crude miracle stares us in the face that a

part of a set may hate the same cardinal number as the entire set

If anyone dislikes the ‘pairing’ definition of ‘same cardinal

number’, he may be challenged to produce a comelier. Intuition

(male, female, or mathematical) has been greatly overrated.

Intuition is the root of all superstition.

Notice at this stage that a difficulty of the first magnitude

has been glossed. What isaset^ora class? ‘That’, in the words of

Hamlet, ‘is the question’. We shall return to it, but we shall not

answer it. Whoever succeeds in answering that innocent ques-

tion to the entire satisfaction of Cantor’s critics will quite likely

dispose of the more serious objections against his ingenious

theory of the infinite and at the same time establish mathe-

matical analysis on a non-emotional basis. To see that the

difficulty is not trivial, try to imagine the set of all positive

rational integers, I, 2, 3, ... , and ask yourself whether, with

Cantor, you can hold this totality - which is a ‘class’ - in your

mind as a definite object of thought, as easily apprehended as

the class x, y, z of three letters. Cantor requires us to do just

this thing in order to reach the iransflnite numbers which he

created.

Proceeding now to the definition of ‘cardinal number’, we
introduce a convenient technical term: two sets or classes

whose members can be paired oft one-to-one (as in the examples

given previously) are said to be similar. Haw many things are

there in the set (or class) x, y, zl Obviously three. But what is
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Hhree’? An answer is contained in tlie following definition:

‘The number of things in a given class is the class of all classes

that are similar to the given class.’

This definition gains nothing from attempted explanation:

it must be grasped as it is. It was proposed in 1879 by Gottlob

Frege, and again (independently) by Bertrand Russell in 1901.

One advantage which it has over other definitions of ‘cardinal

number of a class’ is its applicability to both finite and infinite

classes. Those who believe the definition too mystical for mathe-

matics can avoid it by following Couturat’s advice and not

attempting to define ‘cardinal number’. However, that way also

leads to difficulties.

Cantor’s spectacular result that the class of all algebraic

numbers is similar (in the technical sense defined above) to its

sub-class of all the positive rational integers was but the first

of many wholly unexpected properties of infinite classes.

Granting for the moment that his reasoning in reaching these

properties is sound, or, if not unobjectionable in the form in

which Cantor left it, that it can be made rigorous, we must

admit its power.

Consider for example the ‘existence’ of transcendental

numbers. In an earlier chapter we saw what a tremendous eSort

it cost Hermite to prove the transcendence of a particular

number of this kind. Even to-day there is no general method
known whereby the transcendence of any number which we
suspect is transcendental can be proved; each new type

requires the invention of special and ingenious methods. It is

suspected, for example, that the number (it is a constant,

although it looks as if it might be a variable from its definition)

which is defined as the limit of

1+ - + - + log ri

2 3 n

as n tends to infinity, is transcendental, but we cannot prove

that it is. What is required is to show that this constant is not

a root of any algebraic equation with rational integer co-

efficients.

All this suggests the question ‘How many transcendental
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numbers are there? Are they more numerous than the integers,

or the rationals. or the algebraic numbers as a whole, or are they

less numerous? Since (by Cantor’s theorem) the integers, the

rationals, and all algebraic numbers are equally numerous, the

question amounts to this: can the transcendental numbers be
counted off 1, 2, 3, ...? Is the class of all transcendental

numbers similar to the class of all positive rational integers?

The answer is no; the transcendentals are infinitely more
rnmerous than the integers.

Here we begin to get into the controversial aspects of the

theory of sets. The conclusion just stated was like a challenge

to a man of Kxonecker’s temperament. Discussing Lindemann’s
proof that tt is transcendental (see Chapter 24), Kronecker
asked, ‘Of what use is your beautiful investigation regarding ;r?

^Yhy study such problems, since irrational [and hence trans-

cendental] numbers do not exist?’ We can imagine the effect

on such a scepticism of Cantor’s proof that the transcendentals

are infinitely more numerous than the integers 1, 2, 3, . •

,

which, according to Kronecker, are the noblest work of God
and the only numbers that do ‘exist’.

Even a summary of Cantor’s proof is out ofthe question here,

but something of the kind of reasoning he used can be seen

from the following simple considerations. If a class is similar

(in the above technical sense) to the class of ail positive

rational integers, the class is said to be denumerable. The thing*,

in a denumerable class can be counted off 1, 2, 3, - . .

;

the

things in a non-denumerable class can not be counted off

1, 2, 3, , . . ; there will be more things in a non-denumerabie
class than in a denumerable class. Do non-denumerabie classes

exist? Cantor proved that they do. In fact the class of all points

on any line-segment, no matter how small the segment is

(provided it is more than a single point), is non-denumerabie.

From this we see a hint of why the transcendentals are non-

denumerabie. In the chapter on Gauss we saw that any root of

any algebraic equation is representable by a point on the plane

of Cartesian geometry. All these roots constitute the set of ail

algebraic numbers, which Cantor proved to be denumerable.

But if the points on a mere line-segment are non-denmnerable,
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it follows that all the points on the Cartesian plane are like^
non-denumerahle. The algebraic numbers are spotted over the

plane like stars against a black sky; the dense blackness is the

firmament of the transcendentals.

The most remarkable thing about Cantor’s proof is that it

provides no means whereby a single one of the transcendentals

can be constructed. To Kronecker any such proof was sheer

nonsense. Much milder instances of ‘existence proofs’ roused

his wrath. One of these in particular is of interest as it prophe-

sied Brouwer’s objection to the full use of classical (Aristo-

telian) logic in reasoning about infinite sets.

A polynomial -f- + Z, in which the coeiB-

cients a,b, I are rational numbers is said to be inedimbh if

it cannot he factored into a product of two polynomials both of

which have rational number coefficients. Now, it is a meaningful

statement to most human beings to assert, as Aristotle would,

that a given polynomial either is irreducible oris not irreducible.

Not so for Kronecker. Until some definite process, capable

of being carried out in a finite number of non-tentative steps, is

provided whereby we can settle the reducibility of any given

polynomial, we have no logical right, according to Kronecker,

to use the concept of irreducibility in our mathematical proofs.

To do otherwise, according to him, is to court inconsistencies in

our conclusions and, at best, the use of ‘irreducibility’ without

the process described can give us only a Scotch verdict of ‘not

proven’. All such non-comtructioe reasoning is - according to

Kronecker - illegitimate.

As Cantor’s reasoning in Ms theory of infinite classes is

largely non-constructive, Kronecker regarded it as a dangerous

type of mathematical insanity. Seeing mathematics headed for

the madhouse under Cantor’s leadersMp, and being passion-

ately devoted to what he considered the truth of mathematics,

Kronecker attacked ‘the positive theory of infinity’ and its

hypersensitive author vigorously and viciously with every

weapon that came to his hand, and the tragic outcome was that

not the theory of sets went to the asylum, but Cantor. Kron-

ecker’s attack broke the creator of the theory.

In the spring of 1884, in his fortieth year. Cantor experienced
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the first of those complete breakdowns which were to recur with

varying intensity throughout the rest of his long life and drive

him from society to the shelter of a mental clinic. His explosive

temper aggravated his difficulty. Profound fits of depression

humbled himself in his own eyes and he came to doubt the

soundness of bis work. During one lucid interval he begged the

authorities at Halle to transfer him from his professordiip of

mathematics to a chair of philosophy. Some of his best work on

the positive theory of the infinite was done in the intervals

between one attack and the next. On recovering from a seizure

he noticed that his mind became extraordinarily dear.

Rronecker perhaps has been blamed too severely for Cantor’s

tragedy; his attack was but one of many contributing causes.

Lack of recognition embittered the man who believed he had

taken the first - and last - steps toward a rational theory of the

infinite and he brooded himself into melancholia and irration-

ality. Kronecker, however, does appear to have been largely

responsible for Cantor’s failure to obtain the position he craved

in Berlin. It is usually considered not quite sporting for one

scientist to deliver a savage attack on the work of a contem-

porary to his students. The disagreement can be handled objec-

tively in scientific papers. Kronecker laid himself out in 1891

to criticize Cantor’s work to his students at Berlin, and it

became obvious that there was no room for both under one

roof. As Kronecker was already in possession, Cantor resigned

himself to staying out in the cold.

However, he was not without some comfort. The sympathetic

I^Iittag-Leffler not only published some of Cantor’s work in his

journi (Acta Mathematica) but comforted Cantor in his fight

against Kronecker. In one year alone Mittag-Leffler received no

less than fifty-two letters from the suffering Cantor. Of those

who believed in Cantor’s theories, the genial Hennite was one

of the most enthusiastic. His cordial acceptance of the new

doctrine warmed Cantor’s modest heart; *The pmises which

Hennite pours out to me in this letter ... on the subject of the

theory of sets are so high in my eyes, so unmerited, that I

should not care to publish them lest I incur the reproach of

being dazzled by them.’
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With the opening ofthe new century Cantor's work gradually

came to be accepted as a fundamental contribution to all

mathematics and particularly to the foundations of analysis*

But unfortunately for the theory itself the paradoxes and anti-

nomies which still infect it began to appear simultaneously.

These may in the end be the greatest contribution which

Cantor’s theory is destined to make to mathematics
» for their

unsuspected existence in the very rudiments of logical and

mathematical reasoning about the infinite was the direct in-

spiration of the present critical movement in all deductive

reasoning. Out of this we hope to derive a mathematics which

is both richer and ‘truer’ ~ freer from inconsistency - than the

mathematics of the pre-Cantor era.

Cantor’s most striking results were obtained in the theory of

non-denumerable sets, the simplest example of which is the set

of all points on a line-segment. Only one of the simplest of his

conclusions can be stated here. Contrary to what intuition

would predict, two unequal line-segments contain the same

number of points. Remembering that two sets contain the same

number of things if, and only if, the things in them can be

paired off one-to-one, we easily see the reasonableness of

Cantor’s conclusion* Place the unequal segments AB, CD as in

the figure. The line OPQ cuts CD in the point P, and AB in

Q; P and Q are thus paired off. As OPQ rotates about O, the

aso
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point P traverses CD, while Q simultaneously traverses AB,
and each point of CD has one, and only one, ‘paired’’ point of

AB,
An even more unexpected result can be proved. Any line-

segment, no matter how small, contains as many points as an
infinite straight line. Further, the segment contains as many
points as there are in an entire plane, or in the whole of three-

dimensional space, or in the whole of space of n dimensions

(where n is any integer greater than zero) or, finally, in a space

of a denumerably infinite number of dimensions.

In all this we have not yet attempted to define a class or a set»

Possibly (as Russell held in 1912) it is not necessary to do so in

order to have a clear conception of Cantor’s theory or for that

theory to be consistent with itself - which is enough to demand
of any mathematical theory. Nevertheless present disputes

seem to require that some clear, self-consistent definition be

given. The following used to be thought satisfactor\\

A set is characterized by three qualities: it contains all things

to which a certain definite property (say redness, or volume, or

taste) belongs; no thing not having this property belongs to the

set; each thing in the set is recognizable as the same thing and

as different from all other things in the set - briefly, each thing

in the set has a permanently recognizable individuality. The
set itself is to be grasped as a whole. This definition may be too

drastic for use. Consider, for example, what happens to Cantor’s

set of all transcendental numbers under the third demand.

At this point we may glance back over the whole history of

mathematics - or as much of it as is revealed by the treatises of

the master mathematicians in their purely technical works -

and note two modes of expression which recur constantly in

nearly all mathematical exposition. The reader perhaps has

been irritated by the repetitious use of phrases such as ‘we can

find a whole number greater than 2% or Ve can choose a number

less than n and greater than n ~ 2.’ The choice of such phrase-

ology is not merely stereotyped pedantry. There is a reason for

its use, and careful writers mean exactly what they say when

they assert that ‘we can find, etc’. They mean that they can do

what they say.
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In sharp distinction to this is the other phrase which is reiter-

ated over and over again in mathematical writing; ‘There

exists.’ For example, some would say ‘there exists a whole

number greater than 2’, or ‘there exists a number less than n

and greater than n — 2.’ The use of such phraseology definitely

commits its user to the creed which Kronecker held to be

untenable, unless^ of course, the ‘existence’ is proved by a con-

struction. The existence is not proved for the sets (as defined

above) which appear in Cantor’s theory.

These two ways of speaking divide mathematicians into two

types: the ‘we can’ men believe (possibly subconsciously) that

mathematics is a purely human invention; the ‘there exists’

men believe that mathematics has an extra-human ‘existence’

of its own, and that ‘we’ merely come upon the ‘eternal truths'

of mathematics in our journey through life, in much the same

way that a man taking a walk in a city comes across a number

of streets with whose planning he had nothing whatever to do.

Theologians are ‘exist’ men; cautious sceptics for the most

part *we’ men. ‘There exist an infinity of even numbers, or of

primes’, say the advocates of extra-human ‘existence’
; ‘produce

them’, say Kronecker and the ‘we’ men.

That the distinction is not trivial can be seen from a famous

instance of it in the New Testament. Christ asserted that the

Father ‘exists’
;
Philip demanded ‘Show us the Father and it

suflficeth us.’ Cantor’s theory is almost wholly on the ‘existence’

side. Is it possible that Cantor’s passion for theology deter-

mined his allegiance? If so, we shall have to explain why

Kronecker, also a connoisseur of Christian theology, was the

rabid Sve’ man thathe was. As in all such questions ammunition

for either side can be filched from any pocket.

A striking and important instance of the ‘existence’ way of

looking at the theory of sets is afforded by what is known as

Zennelo’s postulate (stated in 1904). ‘For every set M whose

elements are sets P (that is, M is a set of sets, or a class of

ctoses), the sets P being non-empty and non-overlapping (no

two contain things in common), there exists at least one set

which contains precisely one element from each of the sets P

which constitute M.’ Comparison of this with the previous^
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stated definition of a set (or class) will show that the ‘we^ men
would not consider the postulate self-e\ddeiit if the set M con-

sisted, say, of an infinity of non-overlapping line segments. Yet

the postulate seems reasonable enough. Attempts to prove it

have failed. It is of considerable importance in all questions

relating to continuity,

A word as to how this postulate came to he introduced into

mathematics will suggest another of the unsolved problems of

Cantor’s theory. A set of distinct, countable things, like ail the

bricks in a certain wall, can easily be ordered; we need only

count them off 1, 2, 3, ... in any of dozens of different ways
that win suggest themselves. But how would we go about

ordering all the points on a straight line? They cannot be

counted off 1, 2, 3, ... The task appears hopeless when we
consider that between any two points of the line ‘we can find’,

or 'there exists’ another point of the line. If every time we
counted two adjacent bricks another sprang into being between

them in the wall our counting would become slightly confused.

Nevertheless the points on a straight line do appear to have

some sort of order; we can say whether one point is to the right

or the left of another, and so on. Attempts to order the points

of a line have not succeeded. Zermelo proposed his postulate as

a means for making the attempt easier, but it itself is not

universally accepted as a reasonable assumption or as one

which it is safe to use.

Cantor’s theory contains a great deal more about the actual

infinite and the ‘arithmetic’ of transfinite (infinite) numbers

than what has been indicated here. But as the theory is still in

the controversial stage, we may leave it with the statement of

a last riddle. Does there ‘exist*, or can we 'construct’, an infinite

set whidi is not similar (technical sense of one-to-one matching)

either to the set of all the positive rational integers or to the set

of all points of a line? The answer is unknown.

Cantor died in a mental hospital in Halle on 6 January 191S

at the age of seventy-three. Honours and recognition were his

at the last, and even the old bitterness against lironecker was

forgotten. It was no doubt a satisfaction to Cantor to recall that

he and Kjonecker had become at least superficially reconciled



MEN OE MATHEMATICS

some years before Kronecker’s death in 1891* Could Cantor

have lived till to-day he might have taken a Just pride in the

movement toward more rigorous thinking in all mathematics

for which his own efforts to found analysis (and the infinite) on

a sound basis were largely responsible.

Looking back over the long struggle to make the concepts of

real number^ continuity^ limit, and infinity precise and consis-

tently usable in mathematics, we see that Zeno and Eudoxus

were not so far in time from Weierstrass, Dedekind, and Cantor

as the twenty-four or twenty-five centuries which separate

modem Germany from ancient Greece might seem to imply.

There is no doubt that we have a clearer conception of the

‘ nature of the difficulties involved than our predecessors had,

because we see the same unsolved problems cropping up in new

guises and in fields the ancients never dreamed of, but to say

that we have disposed of those hoary old difficulties is a gross

mis-statement of fact. Nevertheless the net score records a

greater gain than any which our predecessors could rightfully

claim. We are going deeper than they ever imagined necessary,

and we are discovering that some of the ‘laws’ - for instance

those of Aristotelian logic - which they accepted in theii

reasoning are better replaced by others - pure conventions -

in our attempts to correlate our experiences. As has already

been said, Cantor’s revolutionary work gave our present acti-

\Tty its initial impulse. But it was soon discovered - twenty-one

years before Cantor’s death - that his revolution was either too

revolutionary or not revolutionary enough. The latter now

appears to be the case.

The first shot in the counter-revolution was fired in 1897 by

the Italian mathematician Burali-Fortiwhoproduced a flagrant

contradiction by reasoning of the type used by Cantor in his

theory of infinite sets- This particular paradox was only the

first of several, and as it would require lengthy explanations to

make it intelligible, we shall state instead Russell’s of 1908.

We have already mentioned Frege, who gave the ‘class of all

classes similar to a given class’ definition ofthe cardinal number

of the given class. Frege had spent years trying to put the

mathematics of numbers on a sound logical basis. Ris life woifc
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is Ms Grundgeselze der Aritkmetik (The Fundamental La-ws oi

Arithmetic), of wMch the first volume was published in 1893,

the second in 1903. In tMs work the concept of sets is used.

There is also a considerable use of more or less sarcastic invec-

tive against previous writers on the foundations of arithmetic

for their manifest blunders and manifold stupidities. The

second volume closes with the following acknowledgement.

A scientist can hardly encounter anything more unde-

sirable than to have the foundation collapse just as the

work is finished. I was put in this position by a letter from

Mr Bertrand Bussell when the work was almost through

the press.

Russell had sent Frege his ingenious paradox of ‘the set of all

sets which are not members of themselves.’ Is this set a member

of itseK? Either answer can be puzzled out with a little thought

to be wrong. Yet Frege had freely used ‘sets of all sets'.

Many ways were proposed for evading or eliminating the con-

tradictions wMch began exploding like a barrage in and over

the Frege-Dedekind-Cantor theory of the real numbers, con-

tinuity, and the infinite. Frege, Cantor, and Dedekind quit the

field, beaten and disheartened. RusseD proposed his ‘vicious

circle principle’ as a remedy: ‘Whatever involves all of a collec-

tion must not be one of the collection’; later he put forth his

‘axiom of reducibility’, wMch, as it is now practically aban-

doned, need not be described. For a time these restoratives

were brilliantly effective (except in the opinion of the Germssx

mathematicians, who never swallowed them). Gradually, as the

critical examination of all mathematical reasoning gained head-

way, physic was thrown to the dogs and a concerted effort was

begun to find out what really ailed the patient in his irrational

and real number system before administering further nostrums*

The present effort to understand our difficulties originated in

the work ofDavid Hilbert (1862-1943) of Gottingen in 1899 and

in that of L. E, J. Brouwer (1881- ) ofAmsterdam in 1912.

Both of these men and their numerous followers have the com-

mon purpose of putting mathematical reasoning on a sound

basis, although in several respects their methods and phiio-
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sopMes are 'violently opposed. It seems unlikely that both can

be as 'w^holiy right as each appears to believe he is.

Hilbert returned to Greece for the beginning of his philosophy

of mathematics. Resuming the Pythagorean programme of a

rigidly and fully stated set of postulates from which a mathe-

matical argument must proceed by strict deductive reasoning,

Hilbert made the programme of the postulational development

of mathematics more precise than it had been 'vvith the Greeks,

and in 1899 issued the first edition of his classic on the founda-

tions of geometry. One demand which Hilbert made* and 'Prhich

the Greeks do not seem to have thought of, 'was that the

proposed postulates for geometry shall be proved to be self-

consistent (free of internal, concealed contradictions). To

produce such a proof for geometry it is sho’wn that any contra-

diction in the geometry developed from the postulates would

imply a contradiction in arithmetic. The problem is thus

shoved back to pro-ving the consistency of arithmetic, and there

it remains to-day.

Thus -we are back once more asking the sphinx to tell us what

a number is. Both Dedekind and Frege fled to the infinite -

Dedekind 'with his infinite classes defining irrationals, Frege

-with his class of aU classes similar to a given class defining a

cardinal number - to interpret the numbers that puzzled

Pythagoras. Hilbert, too, would seek the answer in the infinite

which, he believes, is necessary for an understanding of the

finite. He is quite emphatic in his belief that Cantorism 'will

ultimately be redeemed from the purgatory in which it now

tosses. ‘This [Cantor’s theory] seems to me the most admirable

fruit of the mathematical mind and indeed one of the hipest

achievements of man’s intellectual processes.’ But he admits

that the paradoxes of Burali-Forti, Russell, and others are not

resolved. However, his faith surmounts all doubts: ‘No one

shah expel us from the paradise which Cantor has created for

us.’

But at this moment of exaltation Brouwer appears with

something that looks suspiciously like a flaming sword in his

strong right hand. The chase is on: Dedekind, in the role of

Adam, and Cantor disguised as Eve at his side, are already
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2yemg the gate apprehensively under the stem regard of the

uncompromising Dutchman. The postulational method for

securing freedom from contradiction proposed by Hilbert 'will,

says, Brouwer, accomplish its end - produce no contradictions,

but ‘nothing of mathematical value will be attained in this

manner; a false theory which is not stopped by a contradiction

is none the less false, just as a criminal policy unchecked by a

reprimanding court is none the less criminaL’

The root of Brouwer’s objection to the ‘criminal pokey’ of his

opponents is something new - at least in mathematics. He
objects to an unrestricted use of Aristotelian logic, particularly

in dealing with infinite sets, and he maintains that such logic

is bound to produce contradictions when applied to sets which

cannot be definitely constructed in Kronecker’s sense (a rule of

procedure must be given whereby the things in the set can be

produced). The law of ‘excluded middle' (a thing must have a

certain property or must not have that property, as for example

in the assertion that a number is prime or is not prime) is

legitimately usable only when applied to finite sets. Aristotle

devised his logic as a body of working rules for finite sets,

basing his method on human experience otfinite sets, and there

is no reason whatever for supposing that a logic which is ade-

quate for the finite will continue to produce consistent (not

contradictory) results when applied to the infinite. This seems

reasonable enough when we recall that the very definition ofan

infinite set emphasizes that a part of an infinite set may contain

precisely as many things as the whole set (as we have illustrated

many times), a situation which never happens for a finite set

when ‘part’ means some, but not all (as it does in the definition

of an infinite set).

Here we have what some consider the root of the trouble in

Cantor’s theory of the actual infinite. For the definition of a set

(as stated some time hack), by which all things having a certain

quality are ‘united’ to form a ‘set’ (or ‘class’), is not suitable as

a basis for the theory of sets, in that the definition either is not

constructive (in Kronecker’s sense) or assumes a constructibility

which no mortal can produce. Brouwer claims that the use of

the law of excluded middle in such a situation is at best merely
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a iieuristie guide to propositions which may be true, hut which

are not necessarily so, even when they have been deduced by a
rigid application of Aristotelian logic, and he says that

numerous false theories (including Cantor’s) have been erected

on this rotten foundation during the past half century.

Such a revolution in the rudiments of mathematical thinkiiifir

does not go unchallenged. Brouwer’s radical move to the left is

speeded by an outraged roar from the reactionary right, ‘What

Weyl and Brouwer are doing [Brouwer is the leader, Weyi his

companion in revolt] is mainly following in the steps of Kro-

necker’, according to Hilbert, the champion of the siatiis quo.

‘They are trying to establish mathematics by jettisoning every-

thing which does not suit them and setting up an embargo. The

eSect is to dismember our science and to run the risk of losing

part of our most valuable possessions. Weyl and Brouwer

condemn the general notions of irrational numbers, of functions

- even of such functions as occur in the theory of numbers -

Cantor’s transdnite numbers, etc., the theorem that an infinite

set of positive integers has a least, and even the “law of ex-

cluded middle”, as for example the assertion: Either there is

only a finite number of primes or there are infinitely many.

These are examples of [to them] forbidden theorems and modes

of reasoning. I believe that impotent as Kronecker was to

abolish irrational numbers (Weyl and Brouwer do permit us to

retain a torso), no less impotent will their efforts prove to-day.

No! Brouwer’s programme is not a revolution, but merely the

repetition of a futile coup de rmin with old methods, but which

was then imdertaken with greater verve, yet failed utterly.

To-day the State [mathematics] is thoroughly armed and

strengthened through the labours of Frege, Dedeldnd, and

Cantor. The efforts of Brouwer and Weyl are foredoomed to

futility,’

To which the other side replies by a shrug of the shoulders

and goes ahead with its great and fundamentally new task ofre-

establishing mathematics (particularly the foundations of

analysis) on a firmer basis than any laid down by the men of

the past 2,500 years from Pythagoras to Weierstrass.

What will mathematics be like a generation hence when - we
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tope these difficulties will ' have been cleared up? Only a

prophet or the seventh son of a prophet sticks Ms head into the

noose of prediction. Bnt if there is any continuity at all in the

evolution of '

mathematics - and the majority of dispassionate

observers believe that there is - we shall find that the mathe-

matics wMch is to come will be broader, firmer, and richer in

content than that which we or our predecessors have known.
' Already the controversies of the past third of a century have

added new fields - including totally new logics - to the vast

domain of mathematics, and the new is being rapidly consol-

dated and co-ordinated with the old. If we may rasMy venture

a prediction, what is to come wfii be fresher, younger in every

respect, and closer to human thought and human needs - freer

of appeal for its Justification to extra-human ‘existences’ - than

what is now being vigorously refasMoned. The spirit of mathe-

matics is eternal youth. As Cantor said, ‘The essence of mathe-

matics resides in its freedom’; the present ‘revolution’ is but

another assertion of that freedom.
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