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PREFACE 

These lectures are meant to be a short introductory course of lectures which 

I (as a national lecturer 1977-78) gave in some of the Indian Universities. 
subject-matter of these lectures is the distribution of the zeros of the Riemann 

zeta-function, the most important in the theory. The most striking development 

in recent times are (i) zero free regions and (i) density results and I introduce these 

topics to a beginner. 

The 

School of Mathematics K. RAMACHANDRA 

Tata Institute of Fundamental Research 

Homi Bhabha Road, Bombay 400 005 



1.Introductory Remarks 
1.1. Definition 

Let s it be a complex variable (o. real i+y-1- dr) 
Put (s) n'. Observe 

Theorem 1.1.1. The series for &0) is convergent for sa>1 and so 
it is uniformly and absolutely convergent with respect to s in Res>1+6 for 

every fixed d>0. () is therefore analytic in a>I.
PROOF 

M+N 

for a >1. 
M+1 

1.2. Euler's product and (s) + 0 in a 1. 

As will be seen later it is important to have zero free regions for (6). 
Practically all the known important results in this direction depend on 

Theorem 1.2.1. Let p run over all primes (i.e., irreducibles) 2, 3, 5, 7, 11,... 
Put 

P(s) II (1 -p)' - II (1+p+p* t+p+). 

Then P (s) is (uniformly and absolutely convergent in a1+ô and so) analytic 

in a>1 and there 

P(s) (s). 

We have (in a> 1) by unique factorisation theorem (which is a PROOF 
corollary of p | ab implies p | a or p | b, m\n means that m divides n, mn is 
the opposite of m|n, we will prove this later). 

9)-I (I-p) 
N 

N-+1 

This proves the theorem. 

Theorem1.2.2. p|ab implies pla or plb (provided a and b are positive 

integers). 
PROOF, (by induction). The theorem is true if p 2, p 3 [for, if 31a and 

31b, a1 or 2 (mod 3) and so is b]. ASSume the truth of the theorem for p N. 
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Let p> N be the least prime. Now plab implies p| (apx) (b Py)I and s 

Ploh where 0 e, p|2 and 0 b, p|2. If a 0 or b,0 nothing t 
prove So pla,b wih 1< d (p D/2, I b,(pD/2. Observe that 
(p-)2<p. and so all the prime factors of a, (and similarly of b,) <p. So 
we have a factorisation of the type 

PO-P1P, with 2<PP. 
Now plp@ and so plp which is impossible or PilQ in which case we can cancel 

P from both sides. Cancelling Pi P, we get 

pQ 1, a contradiction. 

This proves the theorem. 

Theorem 1.2.3. Let 2<P <Pa<. and 2<4<4a <. be prime 
and let p. P9 q Then r= u and p, = q, (i =I to r) and e, = f. 

PROOF Follows on using Theorem 1.2.2 and applying 
Theorem 1.2.4. (cancellation) 

pa= pbb 
implies a = b. 

PROOF. p (a - b) = 0 which is impossible unless a b. 

Theorem 1.2.5. (s) # 0 in a>1. 

PROOF 

n PSN 
N+1 

1.3. Analytic continuation of Z(). 
Theorem 1.3.1. Let a>0. Then the series 

1+1 

o-2-S 
is uniformly convergent in a20, |1|T and in a>1 it is equal to 

() 
PROOF 

-j sdu 

This proves the irst part and the second part is trivial. 
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Theorem 1.3.2. Let be an arbitrary positive integer20 (r+20) 
(K+1). Put 

fx () 

This can be continucd analytically for all s and 

x < where la|< K. X° 

PROOF 
In o>0, 

1 

n+ X + v*1 
0 n=0 

and we can repeat the previous process [K] + [(log t)] times. Roughly every 
time we gain a factor t/X and this proves the result. We must stop this process 

at the said stage since otherwise the remaining additional terms contribute too 

much. 

1.4. Distribution of prime numbers and the zeros of t (s). 

If (s) has no complex zeros put 0 -00 and if g (s) has, let 0 denote the 
least upper bound of the real parts of the zeros of (s). We have by Theorem 

1.2.5 

Theorem1.4.1. 

01. 

Remark. Looking at the present state of affairs in this direction of know- 

ledge, even 0<1 may take several centuries. But Riemann has conjectured 
that 0. It is casy to prove that 02 

Theorem 1.4.2. Ina>1, 

A (n)
(s) n 

where A (1)=0. A (P")= logp and A (n)= 0 if n p", 

PROOF. Follows by Theorem 1.2.1. 

Put 

and y (r)=* +Ro (). A )=y ), 
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R,()0. Let @infimum of those numbers a for which lim 
00 

Then we record some theorems without proo. 

Theorem 14.3 

00. 

Similar theorem is also true of 2 logp =v (x). 1-r C) But for 7 (x) we 

have to write z (x) dau log u + R(x) and modify 0' accordingly 

Theorem 1.4.4 (Hadamard and Vallée Poussin). Explanation of o (..): 
f=0 (g) means |f ls is bounded above.] 

R (x)= O (xe-eylog)with some c> 0. 

Theorem1.4.5 (Littlewood) 

R(x)= 0 (xe-evlog z log log a) with some c>0. 

Theorem 1.4.6 (Vinogradov) For every fixed e 0 

R () = 0, (xe-le s) 3 

Remark: The result of Vinogradov is slightly more precise and reads 

R(x)-0 (x exp (-c (log ax)35 (log log x)-1)) 
Theorem 1.4.7. Let N (a, T) be the number of zeros of g (s) with real part between g and 1 (both inclusive) and imaginary part between 0 and T (both inclusive). Suppose that for all o in 0<al and all T 30 

N(a, T) << TA1-0) (log T)s0000 

(the exponent of (log 7) is unimportant) where A is a numerical constant. Denote 
by P, the n-th prime Then 

PatP O, (p,-1A,). 
Remark. This theorem is due to Ingham who also proved that we can take A8/3. Ingham also showed that if (i) O, (19, 1 10 (a consequenceof Riemann hypothesis) then A2 te for arbitrary e would follow. Estimatesfor Na, T) are called density estimates 

Theorem1.4.8 (Ingham) 

31-0) 
N(o, T) o (T (log 7)000) 
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Theorem1.4.9 (Montgomery H. L. and Huxley) 

1801 0) 
No, T) o (T (log 7) 00000) 

The functions L (s, ) (n)n (, character mod q) arc also important [do 

not worry if you do not know character etc. you have still a bright futureif 

you know how to tackle only (s)]. 
important theorem due to H. L. Montgomery, A. Selberg, Y. Motohashi and 

M. Jutila, viz. 

We can define Ny (a, T). We have an 

Theorem 1.4.10. 

2 N(o, T)- O, ((0* T)12/5ie) (1-0)). 
aS X mod a 

denoting the restriction to primitive characters mod q). 

Remark. The earlier estimate is due to H. L. Montgomery and M. N. 

Huxley (a simple proof was later found by M. Jutila), which is 

12 (1-0) 
o ((Q T) (log (QT) 3000000) 

As remarked earlier Riemann's conjecture implies (it)-O, () 

We record here some unconditional theorems without proof. 

Theorem 1.4.11 (Hardy-Littlewood) 

+it)- O(). 

Theorem 1.4.12 (R. Balasubramanian and D. H. Brown independently) 

S|EG +i) |* dt Tlog T + T + O(T) 

where is a constant independent of T. 

Theorem 1.4.13 (D. H.-Brown) 

+)' dt= T 2 , (log T)+0, (77). 

Poy,P are independent of T. 
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Zere Free Regions 

2.1. 4 first result (d +i)0. 

Theorem 2.1.1. (14+ it)40 for all real . 

FIRST PROOF 
number and consider the inequality (a + e" + e 0. Note that for o 1, 
log &() 

Since & (1)-oo We may suppose that 1 0. Let a be any real 

1mp", an absolutely convergent series.
m 

We have 

2 (a+ +p-ni') 
mp"o 

m21 

+2+ 2a (pnit +p-mit) + p2mi+p-2mi 
mpn 

= log {( (a)-2 | {(a +it)" | (G +2it)|). 
Thus 

(() | (G+it) |1e| (G+2 it)11. 
Suppose now that (1+t) =0. The study of this inequality as G ~ 1 +0 reveals that 4a 2a+2, which is false for instance if a = 1. This proves that (1+ it) # 0. 

SECOND PROOF. The starting point is now 

- (a +2) (a-2a ) 
2it 

(2+ >0. 
Now 

where m is the order of zero at o = 1 +it, 

(a+ 2i) 
021)a-1 

where m' is the order of zero at aI+2i and similar things at 1it and 1-2i. We get a244 0 (a1 is a contradiction as belore). 
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Kemark 1. The second proof is more powerful. The main step can be 

written 

(a+2) (o) 2)(o) 4a Re i)2Re 2in) 
(o in) 

We used rough estimate for the terms on the left. 
further as will be seen. 

We can develop the argument 

Remark 2. We can instead of (a + e0e-10) 0 use 10 1 +z 

+|1+|>3 valid for all complex numbers z. 

Remark 3. Hadamard, Vallée Poussin used 3+4 cos0 +cos 20 20. 

2.2. Some estimate for () 

Theorem 2.2.1. 

()=(O(1+r-)1og t) for t20 and a0 uniformly. 

PROOF. It is clear that if 

X= [). -o( o(1+-)log ). 
nX nX 

Now for a>0, 

n+1 

(s)- -

-o(+D+la1 j-j ) 

du + 
X+1 nK 

n-+1 

0 

du 
-o+|s| - O() 

Since we can confine readily to a 2. 

2.3. Fundamental assumption on () 

We assume 

()-0 (0-0) 4) (log t)"). 12a 02 20 

(a, A, B are constants and these and other O-constants are independent of o, t). 
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Remark We have proved this assumption with a1, A1, B 1. But 

. M. Vinogradov has proved this with constants a1 and some other A, B. 
Best known a is a 3/2 due to Vinogradov's methods and is almost completely 
due to the ideas of Vinogradov. 
2.4 Landau's method 

We want a more precise bound for the terms 

Re (i) 
S(a+it) 

and Re (G2it) 

(a +2it) 
Let PoPo+iva be a zero of () with o99/100, 7%2000. (These constants 
are unimportant. 99/100 can be replaced by something between and 1). Put 

M (0, T) = max | (a + it) |, 
a , Ti20 S 20T 

So i7o with I<o0< T00 

Consider the disc D: |s- sol< R 1/100. Either there is no zero of (s) 
in this disc in which case PoOo R or there are zeros p of g (s). In either case 
put 

(s) f (s) = 

- So 
peD 

Put D:s- sol 3R. Then max |f (s)| <max f ()|<M (1 - 3R, 70) ae Di E BdD 

Since 

I1- 
peD 

on boundary Bd D, of D,. 
D we have 

Hence f (s) is analytic in D and also in D and in 

Re logf (s)<log M (1- 3R, 7)= log M say. 
Also logf (5)- O (log 1/0o- )). Similarly we may prove results about the point B42iya though of course Bo + 2i7, need not be a zero of (s). We now needa lemma which we state as 

Theorem 2.4.1. Let f(2) be analytic in|z-o<R and on the boundary of this disc: Re F(2) <U. Then 

-o(UlFG 
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PROOF. Let F()4 +ag (-o) t+ ag (a- ) with a,a,| e 
whenever a, 0, 0a, 2n. We have 

Re F o + Reit) d02t Re dy 

and 

Re FEo + Re0) cos (0 + a1) d0= T |al. 

Thus 

a, Re (F(E0 + Re)- a,) cos (0+ a)d0 

Re (F (oRe") a,) (1 + cos (0 + a)) do 

<2 (U- Re ag). 
Therefore 

(U +FEo L a=| F (E)| =o( Eo 
R 

As a corollary follows 

log M + l08 0 fSo)0 
S (s%) R 

i.e. 
Theorem 2.4.2. 

log M + log 
(s) -o 

peb 

in particular the same is true of the real part and so 

log M + log 
Re Re P o Re so) R 

peD 

20 and we record the corollary. Remark. We observe that Re 

Theorem 2.4.3. Let o 10o and 0R< Then 100 

log M log 
Re ot 22c (002i 7) R 
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and 

either Po <oR 

log M + Io8 da or ReG i) B 
R (ot i 

where C is a numerical constant. 

We next put og= 1+2(1- Po) where 2 is a large constant; accordingly 

2(1-Po) 1/100 is assumed (otherwise 1- Po 1/100 2). We obtain, with 

a=1 in the second proof of Theorem 2.2.1, either 

log M +log o 
R 

los - Bo +log log Vo 
(R-1 log Vo R 

We may assume that log 1/(1 - B) >e log log o otherwise we have a zero free 

region 1 - Bo2 (log 70), So we have 

loe(-
- R- log 7% + 

R 

1 C1by choosing RT00 
log o If a= 1 we get the zero free region I- B% > 

If a>1 we minimise the R.H.S. subject to 0< R< and we get 

oe +log ( 
Summarising we have This gives a zero free region. 

Theorem 2.4.4. Lct (s) 0 (r4t-0) (log 1)3 for 1>o 1/10 and 
1100, Then the zeros p= iy of (s) with real part 11/100 must 

satisfy <1 and further if y 100, we have, 

- O (log y)e (log log )-1n) 

provided a21, A, B are constants independent of a and . 
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3. Density Results 

3.1. Outline of the method 

We put N(a, T, Ta)= number of zeros p ( ++i) of (() subject to the 
conditions a <1, 7,<<Ta 
problem is to prove for 0<a<I an estimate of the type 

Next write N (o, T)= N (0, 0, T). Our 

3(1-0) 
N (o, T) < T- (log T)50000, T30. 

We will prove only a weaker result where 3/(2 o) is replaced by 4/(3- 26). 

It sufices to prove a similar estimate for N (0, T, 27). A preliminary step is 

Theorem 3.1.1. 

N 0, T, T+ 1) = O(og T). 

PROOF. The proofs of Theorems 1.3.1 and 1.3.2 show that 

13 ()| = O (T:00). max 
o10,Tl2 SiK2T 

We apply maximum modulus principle to 

F G)T 
() 

(2+iT) \ 

where p runs over all the zeros of (s) counted by N (0, T, T+ 1). We havee 

T500 

F2+iT)|=02w0, 7, T1) 
Hence observing that |F(2+ iT)|>1-( 2)- 1) =2- (2) >0 we have 

N (0, 7,T+ 1)= O (log T) 

(observe that on |s-2- iT| = 12,-2- 3) 
Next we divide the rectangle bounded by the lines with real parts o,l and 

imaginary parts T, 2T into rectangles of height 1. We take the rectangles which 

contain a zero and count this number and multiply by O (log T) to get a bound for 
N(a, T, 2T). By applying a convexity argument we convert this problem into 

one of mean value upper bound for 

T 

(t1 if a 2 if a1). 

This leads to the solution of the problem 
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3.2. Mean value upper bounds 

Put F()- () M, (s)- I where 

M ()= (n) 
n 

nT 

Then we prove 

Theorem 3.2.1. 

FC+ ir) | dt = 0 (T(log T)"") 
Ti2 

and 

Theorem 3.2.2. 

E(1+ (log T)-1 + i) 1* dt = O (log T)0). 
12 

The key lemma (which is very simple) is 

Theorem 3.2.3. 

a,n" Pdt =0 (T+ Xlog X)14, 1) 
T12 nK nSK 

To prove Theorem 3.2.3 we have only to obser ve that 

log =0mn) 

2 oW2 l N2m- ) 
whenever mn and that 

mn 

In view of Theorem 3.1.1 it suffices to restrict in the bound for N (0, T, 2T) to 
a +1/log T since otherwise the estimate is trivial. Put G (s)- E (). Select 
a set of zeros in cach of the rectangles which contain a zero p. Then by Cauchy's 
theorem we have 

G()Y-P elt-P)2 
SP 

ds= 2ti times the multiplicity of p 

the integral being taken over the rectangle p+x+ iy, <B+x< 
17+yI< (log T) If log Y-O (log T) then the contributions from the 
horízontal sides is O (T-0). Denoting the vertical sides by , V, we have 

1-0 (log T(G)| di) Yl-8 + log T( |G ()| dt) Yl- 
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We can replace by 1+ and f by 7ri0 and fix Y by ((1+ pr0 P 

This satisfies log Y-0 (log T) and we get 
Theorem 3.2.4. 

IO (log 7T1+)-B (T-10+J)H-). V V 
By Theorem 3.1.1 and 3.2.2, 

Theorem 3.2.5. 

1+0-o (T(log T)' V 

and 

(T-10+ ) = o (log T)3). 
Va 

Next the number of zeros with 

1+ W, is o(og 1") 
W 

V 

and of those with 

T-0+>W, is - o( W 
V 

For the remaining zeros we have by Theorem 3.2.4, 1-0 (log T) W2(1-B) W28-1). 
We next fix Wl-) W-=(log T)-1C where C is a small constant. Then 
Na, T, 2T)- 0 (log T0 (T| W + 1/W). We next put W= W3 Tand get Tat-o) 
W-2-(1log T) C so that N (G, T, 2T) = O (log T)o (log T)- C/Ta (1-0)) -/ (8-2 

This gives what we want since B 2o and W2>T+ can be assumed. 

3.3. Proof of Theorem 3.2.1. We apply Hölder's inequality and we see that we 
have only to prove 

Theorem 3.3.1.1 + in]* dt = O (T(log T)'). 

In view of 

00-2-)= *(-1 

we have only to prove 

Theorem 3.3.2. 

-1n"| dt-O (T(log 7)) for XT 
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PROOF 
2n-+1 

L.H.S.o (+it) 
T12 XlaGncX 

aT 

-or du (n +u) 24 
T2 Xi2nX 

il2 

-or . (n+u)7B-1u d 
TI2 Xl2nsx 0 

- o (T log T) 

by arguments similar to the proof of Theorem 3.2.3. 

Proof of Theorem 3.2.2. We have only to observe that 3.4. 

nt (11o T)+ 
O (T1) 

(by using the argument of the proof of Theorem 1.3.2). Next we have only to 

prove that

1-1lo: T)-i") ( 2 () n-1-(1)log T)-#") -1 1 dt 
Ti2 nST 

- o (log T"). 

This follows from the fact that 2 (dn)* = O (r (log x)). This can be seen 
n 

as follows (d ) < d4 n), where ( ()=2 d, (n) n". For 

45 -(a +4-1) (a+1)° 
a 

(a+) (at 2) (a +3) 
3! 

(Since 6a+6<a+Sa +6, i.e., a < a') 

and 

2 (d ())*x ) 2r-aou) d (n)= O (x (log æ) 
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APPENDIX 

(added in proof) 

We would like to leave some exercises for an enthusiast. Starting with the 
series f(t) (-1)--) = ( + it) (1- 2-") 1>2, it is trivial ial 
to prove f(t)O() and in fact f(t) =O(t"). These thin gs need the estimates 
for S defned by S = (-1)"1 n where a> 1, I<h<a (see the equationaSnSth 

5.2.1 of Titchmarsh's book). The trivial estimate S = O(h) is enough to prove 
ft)- O (t). Actually from the arguments of lemma 5.3 with k =1 and from 
a routine imitation of the arguments on pages 85 and 86 it follows that S 
OW). From this and equation 5.2 it follows that (-1)"-n* ==0 (t/x) n2 

(log )) for 1 2, x1. We now take x= t, then this tail portion is O ( (logt)¥). 
Also -1)n* = o (tt) and so ft) - 0 (r (log 1)). But taking 

x-t the tail portion is o ((6 (log t)). The arguments on pages 85 ard 89 
(with k-2) show that . (-1)"-1n-t = O (16 (log 1). Thus f)= na 

o( (log 19. All these follow straight from the defin ition of f(t) and involve 
only simple calculus. [We do not need functional equation for (s), estimates 
for r (s) and so on.] Try to study Chapters V and VI of Titchmarsh's book and 
try to prove f(t)=OP). It may be mentioned that the best known estimate 
is a very poor buta difficult improvement f(t) O(1087 (log )) on J0) 

178 

O(). I wish you all good luck in the solution of this problem. 
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