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PREFACE

These lectures are meant to be a short introductory course of lectures which
I (as a national lecturer 1977-78) gave in some of the Indian Universities. The
subject-matter of these lectures is the distribution of the zeros of the Riemann
zeta-function, the most important in the theory. The most striking development
in recent times are (i) zero free regions and (ii) density results and I introduce these
topics to a beginner.

School of Mathematics ; K. RAMACHANDRA
Tata Institute of Fundamental Research
Homi Bhabha Road, Bombay 400 005




1. Introductory Remarks
1.1, Definition :

Let s=a 4 it be a complex variable (o,7 real (= 4 J— 1= ",
3 %0
Pat {(s) ~ Y n*'. Observe

ey
Theorem 1.1.1. The series for £ (s) is convergent for s =0 > | and so
it is uniformly and absolutely convergent with respect to s in Res > 1 -+ 4 for
every fixed 0 > 0. ((s) is therefore analytic in ¢ > I,

PrOOF :
M4N 7}
| du
? R f S (s S N B
AT u
M1 M

1.2. Euler’s product and ((s)# 0inog > |

3 As will be seen later it is important to have zero free regions for £ (s).
Practically all the known important results in this direction depend on

Theorem 1.2.1. Let p run over all primes (i.e., irreducibles) 2, 3, 5,7, 11,...
Put

P =T (—p) =M A+p*+p2+p"+...).

Then P (s) is (uniformly and absolutely convergent in ¢ = 1 4 ¢ and so) analytic
in o > 1 and there

P (s) = £(s).

Proor. We have (in ¢ > 1) by unique factorisation theorem (which is a
corollary of p | ab implies p |a or p|b, m|n means that m divides n, m n is
the opposite of m|n, we will prove this later).

«Q

1
| £(s) —”2[”(1 )l z =

N+1

~ This proves the theorem. s
 Theorem 1.2.2. plab implies pla or plb (provnded a and
integers).

Proor, (by induction). The thmem is true
}b a=1 orZ(modJ)andsoilb) Assur
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r implies b )| and o
& be 1 lab implies p [ (a — px)( Py 4
Lt w N the least prime. Now pla m; 16 i 0 ot ," ik : :

‘ 13 ¢ ) < ! .
p ek where 0 < 4, - pl2 and ( ¢ /2,1 < b < (p 1)/2. Observe that

% . )
prove. So plah, with 1< a < ) imi &
U: E<p ‘and w all the prime factors ol ay (and similarly of b,) p. 8o

we have a factonisation of the type
pQ = p, with 2 < p < p.
Now p,1pQ and so p, p which is impossible or p,|Q in which case we can cancel
Py from both sides. Cancelling py, ..., p, We get
pQ' = 1, a contradiction.
This proves the theorem.
Theorem 1.2.3. Let 2< h<pP< ... and 2 < S < (<. be prime

and let Py .. .pyr=gqh...q/" Thenr=uand p,=¢;(i=1tor) and e; = f..
Proor. Follows on using Theorem 1.2.2 and applying

Theorem 1.2.4. (cancellation)

pa = pb
implies a = b.

PROOF. p(a — b) = 0 which is impossible unless @ — p.
Theorem 1.2.5. ((s5)# 0 in ¢ > 1.

PRrOOF.

o
ol
»SN 4 N+1n

1.3, Analytic continuation of £ (s).

Theorem 1.3.1. Let o > 0, Then the serjes

*® 41
f(J‘):Z (n“m f du
u'
ST o
is uniformly convergent in g >4, | ¢ | < Tanding> is equal to
£(s) — "":1_-—1 ;

PROOF,

“'fd fdufn

This pmvcs the first_part and the wopﬂ M fk
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Theorem 1.3.2

& 41 Pur + Let X be an arbitrary positive integer > 20(| 1| + 20)

(5)_‘ L}
Jx (5) = 2 (n '»——f ::fl i
n=X n

This can be continued analytically for all s and

2 C
x®) | < X“: where |0 | < K.

Ineg >0,

i % oo
1
st d e
fX (S) Sf duf vz (n+ X_]I_v)3+1
0 0 n=0

and we can repeat the previous process [K] -+ [(log #)?] times. Roughly every
time we gain a factor 7/X and this proves the result. We must stop this process
at the said stage since otherwise the remaining additional terms contribute too
much.

1.4. Distribution of prime numbers and the zeros of L(s).

If {(s) has no complex zeros put 0 = — oo and if { (s) has, let § denote the
least upper bound of the real parts of the zeros of {(s). Wehave by Theorem
125

Theorem 1.4.1.

< 1.
Remark. Looking at the present state of affairs in this direction of know-

ledge, even 0 < 1 may take several centuries. But Riemann has conjectured
that 0 = 4. It is easy to prove that 6 > 4.

Theorem 1.4.2. Inog>1,

PR z A )
10! "’

n=1

M A()=0. A (p™) = logp and A (n) =0 it n

y
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(J"(YD

‘d

Let @ = mfmum of those numbers a for which lim 0

30
Then we record some theorems without prool.
Theorem 1 4.3
i fi.
Stmilar theorem s also true of 3 logp = v (x), J | =7z (x) Butfor 7 (x) we

A

have 10 write = (x) [ dulogu + R(x) and modify 0" accordingly.

Theorem 1.4.4 (Hadamard and Vallée Poussin). [Explanafion of O Gl
J = O (g) means | f g "' is bounded above.]

R (x) = O (xe~V'&®) with some ¢ > 0,

Theorem 1.4.5 (Littlewood)

R(x) = O (xe-*Vie =z log oz 2) with come ¢ > 0.

Theorem 1.4.6 (Vinogradov). For every fixed ¢ > 0

3
R(x) = O (xe e %) 57",
Remark : The result of Vinogradov is slightly more precise and reads
R(x) = O (xexp (— ¢ (log x)¥> (log log x)-11%)),

Theorem 1.4.7. Let N (g, T) be the number of zeros of ¢ (s) with real part
between o and 1 (both inclusive) and imaginary part between 0 and 7 (both
mclusive). Suppose that for allo in 0< o < | and all T > 30

Nia, T) < T41-9) (log T")%00000

(the exponent of (log 7) is unimportant) where 4 is a numerical constan. Denote
by p, the n-th prime. Then
pﬁil i pn o Oe (Pf: ~H A4 ")-

Remark. This theorem is due to Ingham who also proved that we can
A = 8/3. Ingham also showed that if { (4 + it) « 0, (19, 1 > 10 (a co
of Riemann hypothesis) then 4 = 2 + ¢ for arbitrary « would follow,
for Ni(o, T) are called density estimates, :

Theorem 1.4.8 (Ingham)

N )= 0 (155 (log r)nm)
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Theorem 1,49 (Montgomery H. L. and Huxley)

1w o
N, T)= O(T . (log T)w00n),

E % oo 5
The functions L (s, ) = 3 y(n)n* (1, character mod ¢) are also important [do
3

not worry if you do not know character etc, you have still a bright future if
you know how to tackle only {(s)]. We can define Ny (o, 7). We have an
important theorem due to H. L. Montgomery, A.Selberg, Y. Motohashi and
M. Jutila, viz.,

Theorem 1.4.10.

* N T = 2 T)(12054€) (1-0))
2 2 N1 = 0.2 T) )

(* denoting the restriction to primitive characters mod ¢).

Remark. The earlier estimate is due to H. L. Montgomery and M. N.

Huxley (a simple proof was later found by M. Jutila), which is

12 (1-0)
(G (log (QT) M0000)).

As remarked earlier Riemann’s conjecture implies { () |- it) — O, (1°).
We record here some unconditional theorems without proof.
Theorem 1.4.11 (Hardy-Littlewood)
L@+ if) = O (1),

Theorem 1.4.12 (R, Balasubramanian and D. H. Brown independently)
T
f1L@ 4 it)|2dt = Tlog T + BT + O (1%
0
e f} is a constant independent of 7.

Theorem 14,13 (O. Hobrown)
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2. Zeto Free Regions
2. A frst result {1 4+ it)# 0.

Theorem 2 1.1, {14 it)# 0 for all real ¢

FIRsT prOOF Since (1) v we may suppose that 77 0. Let a be any rez)
number and consider the inequality (¢ -+ ¢ 1 ¢ %) > 0, Note that for ¢ < 1,
logl(s) = X X Ump™ an absolutely convergent series.

»  m>1
We have

ot
m=>1

5 S‘ z a® 12+ 2a(pmit + pmity L prmit L p-2mit

n}pma'

| mit —~mity\2
mp

=log {(£(@)" 2| L(e + i | { (o + 2ir)|3}.
Thus
@) L@ +i) ] Lo+ 2in) |2 > 1.
Suppose now that {(I +if)=0. The study of this inequality as ¢ —» 140

reveals that 4a >a® + 2, which is false for instance if a = 1. This proves

SeCoND PROOF. The starting point is now

o) Uigskn) L e
MBS RIS (R
e 2“(c(a+n) e

(S oE i) v (e D)
(C(a+2it) a2 22

Now

__l’(G)N 1 ¢ (o + it) m
10) ™1 TeTm ™=l

where m is the order of zero at o = 1 + jy,

{' (g + 21!)~ m’
Lo + 2{() ‘ ;':']“

where m' is the order of zero at g =1 4 2 and sin
and 1 ~2ir. We get a* 244 20 (=1 is a co
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Remark 1. The second proof is more powerful. The main step can be
written

) ;(n i Ule -+ Ut
3 - (0 4 D) B b it) Al AL
5 o ((a) TR (o | ir) “ I (g |+ 2it) -

We used rough estimate for the terms on the left. We can develop the argument
further as will be seen.

3 Remark 2. We can instead of (a + & + ¢ )220 use 10°) 1+ 2
3 + | 142%]2 =3 valid for all complex numbers z.

Remark 3. Hadamard, Vallée Poussin used 3 -+ 4cos0 -+ cos20 >0
2.2. Some estimate for ((s)

Theorem 2.2.1.

uniformly.

=
oi-ﬂ

L(s)=(0 @1 +19)logt) for  >20and ¢ >

ProoF. It is clear that if

X=[t],z -'—-0( Z d+1)=0((1—!—11‘”)]0gt).

] Now for o >0,
41
1 'Us)—E —~Z(~—f o f du
2 <X n>X
:0((X+t gt 415 Z }rlduf v"“)
n>X n

~—0(t‘ "+ISI_[ §£u1)=0("'“)

since we can confine readily to o< 2.

2.3, Fundamental assumption on L(s)

We assume

{(s) = 0((1“"’"4)0931)") l;a
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Remark . We have proved this assumption with @ = 1, 4 = 1, 8 = 1. But
1. M. Vinogradov has proved this with constants a - | ;md. some other A4, B.
Best known @ is @ — 3/2 due to Vinogradov's methods and is almost completely
due to the ideas of Vinogradov.

2.4, Landaw's method

We want a more precise bound for the terms

(o ¥ 1) ¢ (e 4 2it)
- —_— B e
o {(a + 1) 6 = ¢ (o + 2it)

Let py = By + iya be a zero of £ (s) with B, > 99/100, y, > 2000. (These constants
are unimportant. 99/100 can be replaced by something between % and 1). Put

M (o, 7) = max | {(a + it) |,

aZ20o, TI20< t < 207

50 =00 —- i;'n With 1 < GO < ‘]—10 J"" ]
Consider the disc D : |s — 59| < R < 1/100. Either there is no zero of £ (s)
in this disc in which case f, < g, — R or there are zeros p of £(s). In either case
put

f = ¢ Gs) .

G2

PeD

Put D, : |s— 50/ < 3R. Then max £ ()] < max |[f (s) | < M (1 — 3R, y,)
4€ Dy 3 € BdD,
since
=
P — S
pPeD

on boundary Bd D, of D,. Hence f (s) is analytic in D and also in D, and in
D we have

Relog/ (s) < log M (1 — 3R, y,) = log M say.

Also log f (s4) = O (log 1/(o4— 1)). Similarly we may prove results about the &
fis 4 2iyy though of course f, + 2iy, need not be a zero of L(s). We no
a lemma which we state as ! -

Theorem 2.4.1. Let /(z) be analytic in | z — Za |< R an
of this disc: Re F(z)< U. Then o

F.(z) = 0 (E-*;J.REE.@J) |
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_ PROOF. Lot F(2) = ay + a0, (2 ~ 25) + ag(z = 2,)* + ... witha, = | a; | &%
3 whenever @;# 0,0 < a; < 2zr. We have

3

L
Re F (2, + Ret?) dO = 2n Re gy,

0
and
aw i}
nj Re F(zy + Re'®)cos (0 +a)dd=m |ay|.
Thus
xla {= -b( Re (F(z, + Ret%) — ay) cos (0 + ay) db!
2% T ;
= O_f Re (F(zy - Re'?) — ay) (1 + cos (0 + ) db

< 2 (U — Re ay).
; Therefore
, U+ |F(z

As a corollary follows

log M + lo AELE

A, g — |
: =0
_/ (So) R
'L,
Theorem 2.4.2.
|
o M
i3 C'_(So) < Z ,_]_.__ LSSt i g 1k
£ (89) S — P R
peD

in particular the same is true of the real part and so

1
log M - log
(/ (A"‘J) g 5 Re _.--l/_ = 0 e «-—._a_.L‘-._l £
— Re m 1 4 So— P R
peb
| |
 Remark. We observe that Re e = 0 and we recerd the corollar)

Theorem 2.4.3. Let 1-<my< 1 + “lm and 02 R<

log M ¢ log

' (0g + 20 ¥s) (
*Redeg'*i“'Wa)‘;‘c Nt 2
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and
either f, < oy — R

I
log M | log
. o ) l ‘(np, | (L”rl : l)
of = R¢ ———til | \
Clog + 1yy) 0y — Po R

where € is a numerical constant.

We next put 6, = 1 + A (1 — ;) where 1 is a large constant; accordingly
Al — By) < 1/100 is assumed (otherwise I — Bo == 1/100 2). We obtain, with
@ = 1 in the second proof of Theorem 2.2.1, either

R s
ﬁo<0’0— R,I.(.., lﬁ-—i‘—/}&—to(ﬁ)

I

1
log + log log ¥,
¢ 1 —f
B AW log i - ,

We may assume that log 1/(1 — fy) > ¢ log log y, otherwise we have a zero free
region 1 — fy = (log 7)™ “ So we have

A O(R"-l log 7o -+ IO{(' - [’°)> '

I —Fy

or

1
b =—
y choosing R 700

If @ = 1 we get the zero free region | — ffy = log

If « > 1 we minimise the R.H.S. subject to 0< RL 100 and we get

o (L) )

This gives a zero free region. Summarising we have

Theorem 2.4.4. Let C(s) = O (A=) (log 1)?) for 130 3 1/10
> 100, Then the zeros p = /3 + iy of {(s) with real part > 1 — 1/100
satnsfy f < 1 and further lf 2 100, we have,

r____ﬁm O ((log )" (log log y)!-1¥)

provided @ 2 1, 4, B are constants independent of o an&



e
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3. Density Results

3.1, Outline of the method

“0 put N(o, T}, Ty) = number of zeros p (« ff 1 iy) of £ (s) subject to the
conditions 6 S B<< 1, Ty < y < Ty Next write N(o,T)=N(s,0,7). Our
problem is to prove for 0 < o< | an estimate of the type

3 (1-0)

N@ T)< T*° (log T)%%, T > 30.

We will prove only a weaker result where 3/(2 — o) is replaced by 4/(3 — 25).
It suffices to prove a similar estimate for N (0, T, 2T). A preliminary step is

Theorem 3.1.1.
N@O,T, T+ 1)= O(log T).
PrOOF. The proofs of Theorems 1.3.1 and 1.3.2 show that
max | {(s)| = O (T5W).

02-10,TI2<t<2T
We apply maximum modulus principle to

Fis)is i(i)(’ - iT)
e )

where p runs over all the zeros of {(s) counted by N(0, 7, T + 1). We have

o =0<&) _

2N, T, T 1)

Hence observing that | F;, 2 +iT)| =21 —({(2)— 1) =2—{(2) >0 we have
NQOT, T+ 1)=0(logT)
S § —2—iT
(observe that on|s— 2 ,le-—lz,l-—__—-i—:.ﬁ_ /3)_

Next we divide the rectangle bounded by the lines with real parts o, 1 and
imaginary parts 7, 2T into rectangles of height 1. We take the rectangles which
contain a zero and count this number and multiply by O (kog T) o geta bonnd for

this -

one of mean value upper bound for

[ oo
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3.2. Mean value upper bounds

Put F,(s) = {(s) Mz (s) — | where

My (s) = z H'(i'z)'
n
a<T
Thea we prove
Theorem 3.2.1.
T 1F.G Lin|dt=0(T(ogT)")
Tiz2
and
Theorem 3.2.2.

j'T | Fy (1 + (log T)™ + it) [2dt =0 ((log T)®).
Ti2

The key lemma (which is very simple) is
Theorem 3.2.3.

i1 2 ayn® Pdi=0 (T + Xlog X) 2 |, ).
n<X "éx

Tiz

To prove Theorem 3.2.3 we have only to obseive that

el ) (m+n)
log min m

whenever m# n and that

Yl o([Y et 3 et

In view of Theor‘m 3.1.1 it suffices to restrict in the bound for N (o, T, 27T) to
o 2§ + l/log T since otherwise the estimate is trivial. Put G (s) = F,(s). Select
a set of zeros in each of the rectangles which contain a zero p. Then by Cauchy s
theorem we have

¥, Yup (#~p)2 %
f (-9) € ds = 2ni times the multiplicity of 4

the integral being taken over the rectangle p + x + iy, «}g“
7+ yl<ogT). 1f log Y= 0 (logT) then the contributior
 horizontal sides is O (T-'%). Denoting the vertical sides byfI’ 3

1-=0(logT(I IG(a)!dt) Y*'f’+losT( f |
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Wecan replace [ by 1 [ and [ by 794 [ andfix ¥ by (14 [)(T-104 fr7)F.
0 L Ve Vs Vy V3

This satisfies log ¥ = O (log T) and we get
Theorem 3.2 4,
=0 ((og N((1 + J)M-A(T10 4 [)¥-1)),
By Theorem 3.1.1 and 3.2.2,
Theorem 3.2.5.
33 Ry VJ:) = O (T (log T)*)

%‘ (T + VJ )2 = O ((log T)™).

Next the number of zeros with

1+ [ w0 (Ll D)

| 21

and of those with

o T30
710 + f S A ((I°WT) )

Vs

For the remaining zeros we have by Theorem 3.2.4, 1=0 ((log T) W2(-f) W‘;’B—l)_
We next fix W29 W21 = (log T)"' C where C is a small constant. Then
N(o, T,2T) = O (log T)'%(T/ W, + 1/W3). We nextput W, = W2 T and get T20-%)
W: % = (log T) Csothat N (o, T, 2T) = O ((log T)*® (log i el & o) e bt
This gives what we want since ff >0 and W, > T} can be assumed.

3.3. Proof of Theorem 3.2.-1. We apply Holder’s inequality and we see that we
have only to prove

Theorem 3.3.1. I | £G4+ in|*de = O (T (log T)).

In view of
L(s) (1 = 2) = :::"n—*(—- -

,nhzwmlywvfm
‘ Mem?osz

) n{ lx‘:gu,( w_ ”Ml ﬁpg
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PROOF,

AT anf P

Lus. =of f m(l Z a+m [ ) | )
Tia Xpgne X an

)

=o(r f i f [ 2 G ),2"’)

Ti2 Xl2€n<X

|
__()(T- f dl f du z (n + wyh

XiznsX

=0(TlogT)
by arguments similar to the proof of Theorem 3.2.3.
3.4. Proof of Theorem 3.2.2. Wc have only to observe that

t(1+aptit)= > samen + O ()

n<TIG

(by using the argument of the proof of Theorem 1.3.2). Next we have only to
prove that

' égT” p1-(1loe T)-—") (2 p1-(1iee r)-u) o | le dt
Ti2 n n<T

— 0 ((log T)).
This follows from the fact that é: (d (n) (0 (\' (lOg x)")_ This can be seen

as follows (4(n)? < dy (n), where (£(9))! = ¥ dy (n)n~*. For

(a+1)=<|( \—"4"5 !(a+4—1)

_{a+ D+ 2@+3)
3 |

(Since 6¢ + 6 < a* + 5a + 6, i.e., a < a?)

Z, (@) < w0 F -0 g ) 0 (s (og )
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APPENDIX
(added in proof)

We would like to leave some exercises for an enthusiast. Starti'ng With the
. : fx.; Sl et oll} oo ) (l 0 25—”)—1 ,)2 i a N
Series f(l) - _L (( - ” n ) ip g(f 3 [t) ’ = 45 It i tr[vla'
b h |

10 prove f(1) = O (¢) and in fact f(r) = O(¢}). These things need the estimates

for Sdefined by S = 3 (—1)n*wherea>1, | <h<g (see the equation
: a<n<a+h

5.2.1 of Titchmarsh’s book). The trivial estimate § — O (h) is enough to prove
F(1) = 0(}). Actually from the arguments of lemma 5.3 with k — | and from
a routine imitation of the arguments on pages 85 and 86 it follows that § =

O (/r). From this and equation 5.2 it follows that é‘ R sy s P O ((t/x)t

(OEN)fors=2. x> 1. We now take x— t3, then this tail portion is O (11 (logr)?).

Also <Z“ LD in Y — o). and so f() =0 (sd(log 1)?). But taking

x =% the tail portion is O (¢ (jog t)?). The arguments on pages 85 ard 89
(ith k =2) show that _ S (CDE — 0 (00105 49).  Thus fl1) =
O (1Y (log ¢ »9). All these follow straight from the definition of f(2) and involve
only simple calculus. [We do not neeq functional equation for ¢ (s), estimates
for I'(s) and s0 on.] Try to study Chapters V and VI of Titchmarsh’s book and
try to prove f(¢) = O (). It may be mentioned that the best known estimate

is a very poor but a difficult improvement J(t) =
O (™). I wish you ajl good luck in the solution of thjs P
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